一种具有双重关注的新型U-Net视网膜血管分割方法。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Muwei Jian, Wenjing Xu, ChangQun Nie, Shuo Li, Songwen Yang, Xiaoguang Li
{"title":"一种具有双重关注的新型U-Net视网膜血管分割方法。","authors":"Muwei Jian, Wenjing Xu, ChangQun Nie, Shuo Li, Songwen Yang, Xiaoguang Li","doi":"10.1088/2057-1976/ada9f0","DOIUrl":null,"url":null,"abstract":"<p><p>In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.\",\"authors\":\"Muwei Jian, Wenjing Xu, ChangQun Nie, Shuo Li, Songwen Yang, Xiaoguang Li\",\"doi\":\"10.1088/2057-1976/ada9f0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ada9f0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada9f0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在眼底图像中,精确分割视网膜血管对于诊断眼部相关疾病,如糖尿病视网膜病变、高血压视网膜病变或其他眼部相关疾病非常重要。在这项工作中,我们提出了一个增强的双注意力u型网络,命名为DAU-Net,分为编码器和解码器部分。其中,我们用ConvNeXt Block和SnakeConv Block代替传统的卷积层,增强其对不同形态血管的识别能力,同时对模型进行轻量化。此外,我们还设计了两个高效的注意模块,即Local-Global attention (LGA)和Cross-Fusion attention (CFA)。具体而言,LGA对编码器提取的特征进行注意力计算,突出血管相关特征,同时抑制无关背景信息;CFA通过全局建模编码器和解码器特征之间的像素相互作用来解决特征提取过程中潜在的信息丢失问题。在DRIVE、CHASE_DB1和STARE三个公共数据集上进行的综合实验表明,DAU-Net在这三个数据集上都获得了很好的分割效果。结果表明:在DRIVE上AUC为0.9818,ACC为0.8299,F1得分为0.9585;在CHASE_DB1上分别为0.9894、0.8499和0.9700;STARE上分别为0.9908、0.8620、0.9712。这些结果有力地证明了DAU-Net在视网膜血管分割中的有效性,突出了其实际临床应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.

In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信