多层网络中高效混合PageRank中心性计算

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri
{"title":"多层网络中高效混合PageRank中心性计算","authors":"Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri","doi":"10.1016/j.chaos.2025.116018","DOIUrl":null,"url":null,"abstract":"Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"51 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient hybrid PageRank centrality computation for multilayer networks\",\"authors\":\"Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri\",\"doi\":\"10.1016/j.chaos.2025.116018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在多层网络中,量化节点的中心性对于识别各种应用中有影响的节点至关重要。Lv等人在单层网络的PageRank模型的基础上,最近引入了一个很有前途的多层PageRank模型,用于评估节点和层的中心性。本文在离散马尔可夫链框架下对该模型进行了重新表述。我们的方法结合了链路多样性来增强中心性测量,并确保内部马尔可夫链的不可约性。这种细化使利用数值代数技术的有效计算策略成为可能。在不同的多层网络上进行的实验证明了该模型的有效性和计算效率,特别是对于大规模网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient hybrid PageRank centrality computation for multilayer networks
Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信