Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri
{"title":"多层网络中高效混合PageRank中心性计算","authors":"Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri","doi":"10.1016/j.chaos.2025.116018","DOIUrl":null,"url":null,"abstract":"Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"51 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient hybrid PageRank centrality computation for multilayer networks\",\"authors\":\"Zhao-Li Shen, Yue-Hao Jiao, Yi-Kun Wei, Chun Wen, Bruno Carpentieri\",\"doi\":\"10.1016/j.chaos.2025.116018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficient hybrid PageRank centrality computation for multilayer networks
Quantifying node centrality in multilayer networks is crucial for identifying influential nodes across various applications. Building on the PageRank model for single-layer networks, Lv et al. recently introduced a promising multilayer PageRank model for assessing node and layer centrality. In this paper, we reformulate this model within a discrete Markov chain framework. Our approach incorporates link diversity to enhance centrality measurement and ensures irreducibility within the internal Markov chains. This refinement enables an efficient computational strategy leveraging numerical algebra techniques. Experiments across diverse multilayer networks demonstrate the model’s effectiveness and computational efficiency, particularly for large-scale networks.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.