Khursheed Muhammad, Mahnoor Sarfraz, N. Ameer Ahammad, Ibrahim E. Elseesy
{"title":"利用Cu-MoS2杂化纳米材料提高热效率:数值和统计方法","authors":"Khursheed Muhammad, Mahnoor Sarfraz, N. Ameer Ahammad, Ibrahim E. Elseesy","doi":"10.1016/j.chaos.2025.116014","DOIUrl":null,"url":null,"abstract":"Hybrid nanofluids exhibit enhanced thermal and transport properties due to synergistic interactions between their constituent materials. In this study, we present a novel investigation into the flow characteristics of a hybrid nanofluid surrounding a stretching cylinder. Our approach involves integrating molybdenum disulfide and copper nanoparticles into a water-based fluid. It considers stretching along the <ce:italic>z</ce:italic>-axis and delves into heat transfer and statistical aspects while accounting for thermal radiation and Joule heating effects and assuming negligible dissipation effects. Moreover, the hybrid nanofluid permeates a positioned porous medium above the cylinder. The article contributes to a deeper understanding of mixed nanofluid behavior and heat transfer within intricate conditions, ultimately aiding in the optimization and design of diverse engineering and industrial processes. Observations display a substantial decrease in energy and flow field attributes as a result of thermal and velocity slip effects. Also, the thermal radiation augments the energy transport and Nusselt number significantly.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"38 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving thermal efficiency through Cu-MoS2 hybrid nanomaterials: A numerical and statistical approach\",\"authors\":\"Khursheed Muhammad, Mahnoor Sarfraz, N. Ameer Ahammad, Ibrahim E. Elseesy\",\"doi\":\"10.1016/j.chaos.2025.116014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid nanofluids exhibit enhanced thermal and transport properties due to synergistic interactions between their constituent materials. In this study, we present a novel investigation into the flow characteristics of a hybrid nanofluid surrounding a stretching cylinder. Our approach involves integrating molybdenum disulfide and copper nanoparticles into a water-based fluid. It considers stretching along the <ce:italic>z</ce:italic>-axis and delves into heat transfer and statistical aspects while accounting for thermal radiation and Joule heating effects and assuming negligible dissipation effects. Moreover, the hybrid nanofluid permeates a positioned porous medium above the cylinder. The article contributes to a deeper understanding of mixed nanofluid behavior and heat transfer within intricate conditions, ultimately aiding in the optimization and design of diverse engineering and industrial processes. Observations display a substantial decrease in energy and flow field attributes as a result of thermal and velocity slip effects. Also, the thermal radiation augments the energy transport and Nusselt number significantly.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Improving thermal efficiency through Cu-MoS2 hybrid nanomaterials: A numerical and statistical approach
Hybrid nanofluids exhibit enhanced thermal and transport properties due to synergistic interactions between their constituent materials. In this study, we present a novel investigation into the flow characteristics of a hybrid nanofluid surrounding a stretching cylinder. Our approach involves integrating molybdenum disulfide and copper nanoparticles into a water-based fluid. It considers stretching along the z-axis and delves into heat transfer and statistical aspects while accounting for thermal radiation and Joule heating effects and assuming negligible dissipation effects. Moreover, the hybrid nanofluid permeates a positioned porous medium above the cylinder. The article contributes to a deeper understanding of mixed nanofluid behavior and heat transfer within intricate conditions, ultimately aiding in the optimization and design of diverse engineering and industrial processes. Observations display a substantial decrease in energy and flow field attributes as a result of thermal and velocity slip effects. Also, the thermal radiation augments the energy transport and Nusselt number significantly.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.