非线性Volterra - Hammerstein积分方程组的谱逼近超收敛方法

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Samiran Chakraborty , Shivam Kumar Agrawal , Gnaneshwar Nelakanti
{"title":"非线性Volterra - Hammerstein积分方程组的谱逼近超收敛方法","authors":"Samiran Chakraborty ,&nbsp;Shivam Kumar Agrawal ,&nbsp;Gnaneshwar Nelakanti","doi":"10.1016/j.chaos.2025.116008","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we develop the Jacobi spectral multi-Galerkin method alongside the Kumar-Sloan technique to approximate systems of non-linear Volterra Hammerstein integral equations. We conduct a comprehensive superconvergence analysis for both smooth and weakly singular kernels in both infinity and weighted-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms. Our findings include the derivation of superconvergence rates for the multi-Galerkin method without resorting to iterated versions. Notably, our conclusions highlight the enhanced performance of multi-Galerkin approximation compared to Jacobi spectral Galerkin methods, while maintaining the same system size for both Jacobi spectral multi-Galerkin and Galerkin methods. To validate the robustness and efficiency of our theoretical results, numerical examples are provided.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 116008"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations\",\"authors\":\"Samiran Chakraborty ,&nbsp;Shivam Kumar Agrawal ,&nbsp;Gnaneshwar Nelakanti\",\"doi\":\"10.1016/j.chaos.2025.116008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we develop the Jacobi spectral multi-Galerkin method alongside the Kumar-Sloan technique to approximate systems of non-linear Volterra Hammerstein integral equations. We conduct a comprehensive superconvergence analysis for both smooth and weakly singular kernels in both infinity and weighted-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms. Our findings include the derivation of superconvergence rates for the multi-Galerkin method without resorting to iterated versions. Notably, our conclusions highlight the enhanced performance of multi-Galerkin approximation compared to Jacobi spectral Galerkin methods, while maintaining the same system size for both Jacobi spectral multi-Galerkin and Galerkin methods. To validate the robustness and efficiency of our theoretical results, numerical examples are provided.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 116008\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925000219\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000219","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发展了Jacobi谱多伽辽金方法和Kumar-Sloan技术来近似非线性Volterra Hammerstein积分方程系统。我们对光滑核和弱奇异核在无穷范数和加权l2范数下的超收敛性进行了全面的分析。我们的发现包括多元伽辽金方法的超收敛率的推导,而不诉诸迭代版本。值得注意的是,我们的结论强调了与Jacobi光谱Galerkin方法相比,多重Galerkin近似的性能得到了提高,同时Jacobi光谱多重Galerkin方法和Galerkin方法保持了相同的系统大小。为了验证理论结果的鲁棒性和有效性,给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations
In this article, we develop the Jacobi spectral multi-Galerkin method alongside the Kumar-Sloan technique to approximate systems of non-linear Volterra Hammerstein integral equations. We conduct a comprehensive superconvergence analysis for both smooth and weakly singular kernels in both infinity and weighted-L2 norms. Our findings include the derivation of superconvergence rates for the multi-Galerkin method without resorting to iterated versions. Notably, our conclusions highlight the enhanced performance of multi-Galerkin approximation compared to Jacobi spectral Galerkin methods, while maintaining the same system size for both Jacobi spectral multi-Galerkin and Galerkin methods. To validate the robustness and efficiency of our theoretical results, numerical examples are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信