{"title":"一种新的基于Riemann-Hilbert公式的可积逆空间非局部Manakov方程约简方法及其应用","authors":"Jianping Wu","doi":"10.1016/j.chaos.2025.115997","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel Riemann–Hilbert (RH) formulation-based reduction method is developed for an integrable reverse-space nonlocal Manakov equation. Firstly, the scattering-data constraints of the reverse-space nonlocal Manakov equation are shown to be difficult to determine via the traditional RH method. Secondly, to obtain the scattering-data constraints of the reverse-space nonlocal Manakov equation, the traditional RH method is extended to an improved version which we call a novel RH formulation-based reduction method. Specifically, utilizing the RH formulation-based reduction method, the scattering-data constraints of the reverse-space nonlocal Manakov equation are determined to guarantee the required nonlocal symmetry reduction of the two-component Ablowitz–Kaup–Newell–Segur (AKNS) system. Moreover, the scattering-data constraints of the reverse-space nonlocal Manakov equation are compared with those of the Manakov equation. Thirdly, <span><math><mi>N</mi></math></span>-soliton solutions of the reverse-space nonlocal Manakov equation are obtained by imposing the obtained scattering-data constraints in those of the two-component AKNS system. Furthermore, the applications of our novel RH formulation-based reduction method are confirmed by applying it to another integrable nonlocal Manakov equation of reverse-spacetime type. Moreover, the scattering-data constraints of the reverse-spacetime nonlocal Manakov equation are further compared with those of the reverse-space nonlocal Manakov equation and the Manakov equation, respectively. Additionally, the nonlinear soliton features of the reverse-space nonlocal Manakov equation and the reverse-spacetime nonlocal Manakov equation are analyzed and classified in detail, respectively, according to different spectral parameter selections.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 115997"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications\",\"authors\":\"Jianping Wu\",\"doi\":\"10.1016/j.chaos.2025.115997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a novel Riemann–Hilbert (RH) formulation-based reduction method is developed for an integrable reverse-space nonlocal Manakov equation. Firstly, the scattering-data constraints of the reverse-space nonlocal Manakov equation are shown to be difficult to determine via the traditional RH method. Secondly, to obtain the scattering-data constraints of the reverse-space nonlocal Manakov equation, the traditional RH method is extended to an improved version which we call a novel RH formulation-based reduction method. Specifically, utilizing the RH formulation-based reduction method, the scattering-data constraints of the reverse-space nonlocal Manakov equation are determined to guarantee the required nonlocal symmetry reduction of the two-component Ablowitz–Kaup–Newell–Segur (AKNS) system. Moreover, the scattering-data constraints of the reverse-space nonlocal Manakov equation are compared with those of the Manakov equation. Thirdly, <span><math><mi>N</mi></math></span>-soliton solutions of the reverse-space nonlocal Manakov equation are obtained by imposing the obtained scattering-data constraints in those of the two-component AKNS system. Furthermore, the applications of our novel RH formulation-based reduction method are confirmed by applying it to another integrable nonlocal Manakov equation of reverse-spacetime type. Moreover, the scattering-data constraints of the reverse-spacetime nonlocal Manakov equation are further compared with those of the reverse-space nonlocal Manakov equation and the Manakov equation, respectively. Additionally, the nonlinear soliton features of the reverse-space nonlocal Manakov equation and the reverse-spacetime nonlocal Manakov equation are analyzed and classified in detail, respectively, according to different spectral parameter selections.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 115997\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925000104\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000104","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种新的基于Riemann-Hilbert (RH)公式的可积逆空间非局部Manakov方程约简方法。首先,利用传统的RH方法难以确定逆空间非局部Manakov方程的散射数据约束;其次,为了获得逆空间非局部Manakov方程的散射数据约束,将传统的RH方法扩展为一种改进的基于新RH公式的约简方法。具体而言,利用基于RH公式的约简方法,确定了逆空间非局部Manakov方程的散射数据约束,以保证双组分ablowitz - kap - newwell - segur (AKNS)系统具有所需的非局部对称性约简。此外,还比较了逆空间非局部Manakov方程与Manakov方程的散射数据约束。第三,将得到的散射数据约束作用于双分量AKNS系统的散射数据约束,得到逆空间非局部Manakov方程的n孤子解。此外,将基于RH公式的新约简方法应用于另一个逆时空型可积非局部Manakov方程,验证了该方法的应用。此外,还将反时空非局部Manakov方程的散射数据约束与反空间非局部Manakov方程和Manakov方程的散射数据约束进行了比较。此外,根据不同的谱参数选择,对逆空间非局部Manakov方程和逆时空非局部Manakov方程的非线性孤子特征进行了详细的分析和分类。
A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications
In this paper, a novel Riemann–Hilbert (RH) formulation-based reduction method is developed for an integrable reverse-space nonlocal Manakov equation. Firstly, the scattering-data constraints of the reverse-space nonlocal Manakov equation are shown to be difficult to determine via the traditional RH method. Secondly, to obtain the scattering-data constraints of the reverse-space nonlocal Manakov equation, the traditional RH method is extended to an improved version which we call a novel RH formulation-based reduction method. Specifically, utilizing the RH formulation-based reduction method, the scattering-data constraints of the reverse-space nonlocal Manakov equation are determined to guarantee the required nonlocal symmetry reduction of the two-component Ablowitz–Kaup–Newell–Segur (AKNS) system. Moreover, the scattering-data constraints of the reverse-space nonlocal Manakov equation are compared with those of the Manakov equation. Thirdly, -soliton solutions of the reverse-space nonlocal Manakov equation are obtained by imposing the obtained scattering-data constraints in those of the two-component AKNS system. Furthermore, the applications of our novel RH formulation-based reduction method are confirmed by applying it to another integrable nonlocal Manakov equation of reverse-spacetime type. Moreover, the scattering-data constraints of the reverse-spacetime nonlocal Manakov equation are further compared with those of the reverse-space nonlocal Manakov equation and the Manakov equation, respectively. Additionally, the nonlinear soliton features of the reverse-space nonlocal Manakov equation and the reverse-spacetime nonlocal Manakov equation are analyzed and classified in detail, respectively, according to different spectral parameter selections.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.