放大光子自旋霍尔效应的非互易腔磁系统

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Akhtar Munir, Muqaddar Abbas, Chunfang Wang
{"title":"放大光子自旋霍尔效应的非互易腔磁系统","authors":"Akhtar Munir, Muqaddar Abbas, Chunfang Wang","doi":"10.1016/j.chaos.2025.116019","DOIUrl":null,"url":null,"abstract":"Nonreciprocal cavity magnonics combines magnetics and photonics to provide a versatile platform for studying nonlinear interactions and spin–orbit coupling in optical systems. We present a theoretical framework to amplify the photonic spin Hall effect (SHE) in a nonreciprocal cavity magnonics system with two microwave cavity modes and a single magnon mode. By tuning the coupling strengths between clockwise (CW) and counterclockwise (CCW) microwave modes and magnons, we achieve a high isolation rate <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi mathvariant=\"script\">I</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>50</mml:mn></mml:mrow></mml:math>, indicating high nonreciprocity. Using the transfer matrix approach, we compute the reflection coefficients of transverse magnetic (TM) and transverse electric (TE) polarized light, demonstrating amplified photonic SHE via control of CW and CCW coupling rates. The nonlinear dynamics arising from asymmetric spin splitting and enhanced photon-magnon interactions exhibit intriguing effects such as dynamic spin–orbit coupling, paving the way for advanced spin photonic devices. This study highlights the potential of cavity magnomechanics to extend the understanding of nonreciprocal phenomena and provides a pathway to developing spin-based photonic circuits, optical isolators, and polarization-sensitive devices for nonlinear optical applications.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"51 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect\",\"authors\":\"Akhtar Munir, Muqaddar Abbas, Chunfang Wang\",\"doi\":\"10.1016/j.chaos.2025.116019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonreciprocal cavity magnonics combines magnetics and photonics to provide a versatile platform for studying nonlinear interactions and spin–orbit coupling in optical systems. We present a theoretical framework to amplify the photonic spin Hall effect (SHE) in a nonreciprocal cavity magnonics system with two microwave cavity modes and a single magnon mode. By tuning the coupling strengths between clockwise (CW) and counterclockwise (CCW) microwave modes and magnons, we achieve a high isolation rate <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi mathvariant=\\\"script\\\">I</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mml:mo><mml:mn>50</mml:mn></mml:mrow></mml:math>, indicating high nonreciprocity. Using the transfer matrix approach, we compute the reflection coefficients of transverse magnetic (TM) and transverse electric (TE) polarized light, demonstrating amplified photonic SHE via control of CW and CCW coupling rates. The nonlinear dynamics arising from asymmetric spin splitting and enhanced photon-magnon interactions exhibit intriguing effects such as dynamic spin–orbit coupling, paving the way for advanced spin photonic devices. This study highlights the potential of cavity magnomechanics to extend the understanding of nonreciprocal phenomena and provides a pathway to developing spin-based photonic circuits, optical isolators, and polarization-sensitive devices for nonlinear optical applications.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

非互易腔磁学结合了磁学和光子学,为研究光学系统中的非线性相互作用和自旋轨道耦合提供了一个通用的平台。我们提出了一个理论框架来放大具有两个微波腔模式和一个磁振子模式的非互易腔磁系统中的光子自旋霍尔效应。通过调整顺时针(CW)和逆时针(CCW)微波模式与磁振子之间的耦合强度,我们实现了高隔离率I>;50,表明高非互易性。利用传递矩阵法,我们计算了横向磁偏振光(TM)和横向电偏振光(TE)的反射系数,证明了通过控制连续波和连续波耦合率来放大光子SHE。非对称自旋分裂引起的非线性动力学和增强的光子-磁振子相互作用表现出诸如动态自旋-轨道耦合等有趣的效应,为先进的自旋光子器件铺平了道路。这项研究强调了空腔磁力学在扩展对非互易现象的理解方面的潜力,并为开发基于自旋的光子电路、光隔离器和用于非线性光学应用的偏振敏感器件提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect
Nonreciprocal cavity magnonics combines magnetics and photonics to provide a versatile platform for studying nonlinear interactions and spin–orbit coupling in optical systems. We present a theoretical framework to amplify the photonic spin Hall effect (SHE) in a nonreciprocal cavity magnonics system with two microwave cavity modes and a single magnon mode. By tuning the coupling strengths between clockwise (CW) and counterclockwise (CCW) microwave modes and magnons, we achieve a high isolation rate I>50, indicating high nonreciprocity. Using the transfer matrix approach, we compute the reflection coefficients of transverse magnetic (TM) and transverse electric (TE) polarized light, demonstrating amplified photonic SHE via control of CW and CCW coupling rates. The nonlinear dynamics arising from asymmetric spin splitting and enhanced photon-magnon interactions exhibit intriguing effects such as dynamic spin–orbit coupling, paving the way for advanced spin photonic devices. This study highlights the potential of cavity magnomechanics to extend the understanding of nonreciprocal phenomena and provides a pathway to developing spin-based photonic circuits, optical isolators, and polarization-sensitive devices for nonlinear optical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信