采用分布耦合非线性能量汇的薄梁系统减振研究

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Qichen Wang, Yuhao Zhao
{"title":"采用分布耦合非线性能量汇的薄梁系统减振研究","authors":"Qichen Wang, Yuhao Zhao","doi":"10.1016/j.chaos.2025.116047","DOIUrl":null,"url":null,"abstract":"In engineering applications, complex structural forms can often be approximated by coupled beam systems, underscoring the critical importance of vibration control in these structures. Leveraging the advantages of distributed nonlinear energy sinks (NES) in structural vibration management, this study introduces a distributed coupling nonlinear energy sink (CNES) into thin beam systems (TBS) and investigates its efficacy in reducing vibrations. A mathematical model of TBS incorporating distributed CNES is developed, and the Galerkin truncation method (GTM) is utilized to analyze TBS vibration response under harmonic excitation, confirming model accuracy. The effects of core parameters within the distributed CNES on the vibration reduction performance of TBS are systematically analyzed. Furthermore, the influence of varying distribution quantities of the distributed CNES on vibration behavior is also investigated. Numerical simulations reveal that optimized parameters for distributed CNES significantly enhance the vibration reduction ratio of TBS. However, certain parameter values may induce unconventional vibrational phenomena. This study finds that adjusting the distribution density of NES can not only mitigate these unconventional vibrations but also substantially boost vibration reduction efficacy. Compared to single CNES, distributed CNES offers a robust solution for controlling nonlinear-induced unconventional vibrations, allowing for effective vibration suppression in TBS without altering their intrinsic vibration characteristics.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration reduction research of a thin beam system by employing distributed coupling nonlinear energy sinks\",\"authors\":\"Qichen Wang, Yuhao Zhao\",\"doi\":\"10.1016/j.chaos.2025.116047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In engineering applications, complex structural forms can often be approximated by coupled beam systems, underscoring the critical importance of vibration control in these structures. Leveraging the advantages of distributed nonlinear energy sinks (NES) in structural vibration management, this study introduces a distributed coupling nonlinear energy sink (CNES) into thin beam systems (TBS) and investigates its efficacy in reducing vibrations. A mathematical model of TBS incorporating distributed CNES is developed, and the Galerkin truncation method (GTM) is utilized to analyze TBS vibration response under harmonic excitation, confirming model accuracy. The effects of core parameters within the distributed CNES on the vibration reduction performance of TBS are systematically analyzed. Furthermore, the influence of varying distribution quantities of the distributed CNES on vibration behavior is also investigated. Numerical simulations reveal that optimized parameters for distributed CNES significantly enhance the vibration reduction ratio of TBS. However, certain parameter values may induce unconventional vibrational phenomena. This study finds that adjusting the distribution density of NES can not only mitigate these unconventional vibrations but also substantially boost vibration reduction efficacy. Compared to single CNES, distributed CNES offers a robust solution for controlling nonlinear-induced unconventional vibrations, allowing for effective vibration suppression in TBS without altering their intrinsic vibration characteristics.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116047\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在工程应用中,复杂的结构形式通常可以通过耦合梁系统来近似,这强调了在这些结构中振动控制的重要性。利用分布式非线性能量槽(NES)在结构振动管理中的优势,将分布式耦合非线性能量槽(CNES)引入到薄梁系统(TBS)中,并研究其减振效果。建立了包含分布式CNES的TBS数学模型,并利用伽辽金截断法(GTM)分析了TBS在谐波激励下的振动响应,验证了模型的准确性。系统分析了分布式CNES内核心参数对TBS减振性能的影响。此外,还研究了分布CNES的不同分布量对结构振动特性的影响。数值模拟结果表明,优化后的分布式CNES参数显著提高了TBS的减振率。然而,某些参数值可能会引起非常规的振动现象。本研究发现,调整NES的分布密度不仅可以减轻这些非常规振动,而且可以大幅提高减振效果。与单一CNES相比,分布式CNES为控制非线性诱导的非常规振动提供了强大的解决方案,允许在不改变TBS固有振动特性的情况下有效抑制振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration reduction research of a thin beam system by employing distributed coupling nonlinear energy sinks
In engineering applications, complex structural forms can often be approximated by coupled beam systems, underscoring the critical importance of vibration control in these structures. Leveraging the advantages of distributed nonlinear energy sinks (NES) in structural vibration management, this study introduces a distributed coupling nonlinear energy sink (CNES) into thin beam systems (TBS) and investigates its efficacy in reducing vibrations. A mathematical model of TBS incorporating distributed CNES is developed, and the Galerkin truncation method (GTM) is utilized to analyze TBS vibration response under harmonic excitation, confirming model accuracy. The effects of core parameters within the distributed CNES on the vibration reduction performance of TBS are systematically analyzed. Furthermore, the influence of varying distribution quantities of the distributed CNES on vibration behavior is also investigated. Numerical simulations reveal that optimized parameters for distributed CNES significantly enhance the vibration reduction ratio of TBS. However, certain parameter values may induce unconventional vibrational phenomena. This study finds that adjusting the distribution density of NES can not only mitigate these unconventional vibrations but also substantially boost vibration reduction efficacy. Compared to single CNES, distributed CNES offers a robust solution for controlling nonlinear-induced unconventional vibrations, allowing for effective vibration suppression in TBS without altering their intrinsic vibration characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信