{"title":"GNSS-R掠角精密测高的比较研究","authors":"Raquel N. Buendía, Sajad Tabibi, Olivier Francis","doi":"10.1016/j.rse.2025.114604","DOIUrl":null,"url":null,"abstract":"Sea Level Anomaly (SLA) measurements are essential for understanding oceanic dynamics, climate variability, and climate change impacts. While satellite-based radar altimetry missions are the primary source of such measurements, their spatiotemporal resolution may sometimes be insufficient. This study explores the potential of Global Navigation Satellite Systems-Reflectometry (GNSS-R) as an additional approach for SLA retrieval. It exploits L-Band coherent carrier phase measurements collected by radio occultation receivers in Low Earth Orbit (LEO), known as Grazing angle GNSS-R (GG-R). We compare these GNSS-R measurements with those from traditional radar altimetry, in- cluding Sentinel-3 A/3B, Saral, and Cryosat-2. Our analysis of SLA data spanning from May 2019 to October 2021 reveals an average Root Mean Square Error (RMSE) of ∼47 cm among nearly 10,000 samples. We find that measure- ments derived from both techniques often complement each other when they meet recommended quality standards. Enhancing GG-R estimates could serve as a valuable complement to existing radar altimetry missions, which alone may not provide sufficient data. Furthermore, a comparison exclusively focused on GG-R events has been made to ensure consistency in the Spire GG-R retrievals, resulting in a 25 cm RMSE. Additionally, we conducted an assess- ment to evaluate the coherency and coverage of GG-R measurements. Approximately 24 % of the tracks are coherent, primarily located in the polar regions and calm waters.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"1 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring grazing angle GNSS-R for precision altimetry: A comparative study\",\"authors\":\"Raquel N. Buendía, Sajad Tabibi, Olivier Francis\",\"doi\":\"10.1016/j.rse.2025.114604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea Level Anomaly (SLA) measurements are essential for understanding oceanic dynamics, climate variability, and climate change impacts. While satellite-based radar altimetry missions are the primary source of such measurements, their spatiotemporal resolution may sometimes be insufficient. This study explores the potential of Global Navigation Satellite Systems-Reflectometry (GNSS-R) as an additional approach for SLA retrieval. It exploits L-Band coherent carrier phase measurements collected by radio occultation receivers in Low Earth Orbit (LEO), known as Grazing angle GNSS-R (GG-R). We compare these GNSS-R measurements with those from traditional radar altimetry, in- cluding Sentinel-3 A/3B, Saral, and Cryosat-2. Our analysis of SLA data spanning from May 2019 to October 2021 reveals an average Root Mean Square Error (RMSE) of ∼47 cm among nearly 10,000 samples. We find that measure- ments derived from both techniques often complement each other when they meet recommended quality standards. Enhancing GG-R estimates could serve as a valuable complement to existing radar altimetry missions, which alone may not provide sufficient data. Furthermore, a comparison exclusively focused on GG-R events has been made to ensure consistency in the Spire GG-R retrievals, resulting in a 25 cm RMSE. Additionally, we conducted an assess- ment to evaluate the coherency and coverage of GG-R measurements. Approximately 24 % of the tracks are coherent, primarily located in the polar regions and calm waters.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2025.114604\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.114604","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring grazing angle GNSS-R for precision altimetry: A comparative study
Sea Level Anomaly (SLA) measurements are essential for understanding oceanic dynamics, climate variability, and climate change impacts. While satellite-based radar altimetry missions are the primary source of such measurements, their spatiotemporal resolution may sometimes be insufficient. This study explores the potential of Global Navigation Satellite Systems-Reflectometry (GNSS-R) as an additional approach for SLA retrieval. It exploits L-Band coherent carrier phase measurements collected by radio occultation receivers in Low Earth Orbit (LEO), known as Grazing angle GNSS-R (GG-R). We compare these GNSS-R measurements with those from traditional radar altimetry, in- cluding Sentinel-3 A/3B, Saral, and Cryosat-2. Our analysis of SLA data spanning from May 2019 to October 2021 reveals an average Root Mean Square Error (RMSE) of ∼47 cm among nearly 10,000 samples. We find that measure- ments derived from both techniques often complement each other when they meet recommended quality standards. Enhancing GG-R estimates could serve as a valuable complement to existing radar altimetry missions, which alone may not provide sufficient data. Furthermore, a comparison exclusively focused on GG-R events has been made to ensure consistency in the Spire GG-R retrievals, resulting in a 25 cm RMSE. Additionally, we conducted an assess- ment to evaluate the coherency and coverage of GG-R measurements. Approximately 24 % of the tracks are coherent, primarily located in the polar regions and calm waters.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.