{"title":"变指数权函数积分的高斯积分规则及其在弱奇异Volterra积分方程中的应用","authors":"Chafik Allouch, Gradimir V Milovanović","doi":"10.1093/imanum/drae088","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical integration approach that can be used to approximate on a finite interval, the integrals of functions that contain Jacobi weights with variable exponents. A modification of the integrand close to the singularities is needed, and a new modification is proposed. An application of such a rule to the numerical solution of variable-exponent weakly singular Volterra integral equations of the second kind is also explored. In the space of continuous functions, the stability and the error estimates are demonstrated, and numerical tests that validate these estimates are conducted.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"59 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauss quadrature rules for integrals involving weight functions with variable exponents and an application to weakly singular Volterra integral equations\",\"authors\":\"Chafik Allouch, Gradimir V Milovanović\",\"doi\":\"10.1093/imanum/drae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical integration approach that can be used to approximate on a finite interval, the integrals of functions that contain Jacobi weights with variable exponents. A modification of the integrand close to the singularities is needed, and a new modification is proposed. An application of such a rule to the numerical solution of variable-exponent weakly singular Volterra integral equations of the second kind is also explored. In the space of continuous functions, the stability and the error estimates are demonstrated, and numerical tests that validate these estimates are conducted.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae088\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae088","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Gauss quadrature rules for integrals involving weight functions with variable exponents and an application to weakly singular Volterra integral equations
This paper presents a numerical integration approach that can be used to approximate on a finite interval, the integrals of functions that contain Jacobi weights with variable exponents. A modification of the integrand close to the singularities is needed, and a new modification is proposed. An application of such a rule to the numerical solution of variable-exponent weakly singular Volterra integral equations of the second kind is also explored. In the space of continuous functions, the stability and the error estimates are demonstrated, and numerical tests that validate these estimates are conducted.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.