Huan Meng, Jun-Song Jia, Peng-Fei Yang, Yu-Long Li, Qiong Yu and Wei Shu
{"title":"镍催化烯丙胺的区域选择性和位点发散性还原芳基烷基化反应","authors":"Huan Meng, Jun-Song Jia, Peng-Fei Yang, Yu-Long Li, Qiong Yu and Wei Shu","doi":"10.1039/D4SC07728H","DOIUrl":null,"url":null,"abstract":"<p >Catalytic methods by switching the least parameters for regioselective and site-divergent transformations to construct different architectures from identical and readily available starting materials are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site diversity renders this strategy appealing yet challenging. Herein, Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of <em>N</em>-acyl allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylation of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing straightforward and efficient access to diverse C(sp<small><sup>3</sup></small>)-rich branched aliphatic amines from identical starting materials.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 10","pages":" 4442-4449"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07728h?page=search","citationCount":"0","resultStr":"{\"title\":\"Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines†\",\"authors\":\"Huan Meng, Jun-Song Jia, Peng-Fei Yang, Yu-Long Li, Qiong Yu and Wei Shu\",\"doi\":\"10.1039/D4SC07728H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic methods by switching the least parameters for regioselective and site-divergent transformations to construct different architectures from identical and readily available starting materials are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site diversity renders this strategy appealing yet challenging. Herein, Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of <em>N</em>-acyl allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylation of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing straightforward and efficient access to diverse C(sp<small><sup>3</sup></small>)-rich branched aliphatic amines from identical starting materials.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 10\",\"pages\":\" 4442-4449\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07728h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07728h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07728h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines†
Catalytic methods by switching the least parameters for regioselective and site-divergent transformations to construct different architectures from identical and readily available starting materials are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site diversity renders this strategy appealing yet challenging. Herein, Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of N-acyl allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylation of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.