{"title":"镍催化烯丙胺的区域选择性和位点发散性还原芳基烷基化反应","authors":"Huan Meng, Jun-Song Jia, Peng-Fei Yang, Yu-Long Li, Qiong Yu, Wei Shu","doi":"10.1039/d4sc07728h","DOIUrl":null,"url":null,"abstract":"Catalytic methods allow for regioselective and site-divergent transformations for rapid construction of different complex architectures from identical and readily-available starting materials by switching the least parameters are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site-diversity renders this strategy appealing yet challenging. Herein, a Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylations of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of sterically and electronically differentiated terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing a straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"27 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-Catalyzed Regioselective and Site-divergent Reductive Arylalkylations of Allylic Amines\",\"authors\":\"Huan Meng, Jun-Song Jia, Peng-Fei Yang, Yu-Long Li, Qiong Yu, Wei Shu\",\"doi\":\"10.1039/d4sc07728h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catalytic methods allow for regioselective and site-divergent transformations for rapid construction of different complex architectures from identical and readily-available starting materials by switching the least parameters are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site-diversity renders this strategy appealing yet challenging. Herein, a Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylations of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of sterically and electronically differentiated terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing a straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4sc07728h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07728h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ni-Catalyzed Regioselective and Site-divergent Reductive Arylalkylations of Allylic Amines
Catalytic methods allow for regioselective and site-divergent transformations for rapid construction of different complex architectures from identical and readily-available starting materials by switching the least parameters are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site-diversity renders this strategy appealing yet challenging. Herein, a Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylations of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of sterically and electronically differentiated terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing a straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.