Junjun Ge, Tengyue Yin, Haoyang Zhang, Yue Cao, Juan Liu, Jun-Jie Zhu, Yang Zhou and Yuanyuan Wang
{"title":"掺杂魔术级纳米团簇的光交联构建增强电化学发光生物传感器","authors":"Junjun Ge, Tengyue Yin, Haoyang Zhang, Yue Cao, Juan Liu, Jun-Jie Zhu, Yang Zhou and Yuanyuan Wang","doi":"10.1039/D4SC07800D","DOIUrl":null,"url":null,"abstract":"<p >Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS)<small><sub>34</sub></small>:Ag MSCs compared with original (CdS)<small><sub>34</sub></small> MSCs. The resulting BPE-ECL biosensing platform was used for the sensitive detection of glucose with a linear detection range of 10 μM to 1 mM and a detection limit of 3.64 μM. This approach provides a robust strategy to enhance MSC-based ECL biosensing, paving the way for ultrasensitive, stable biosensors for clinical diagnostics and bioanalysis.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 8","pages":" 3671-3679"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07800d?page=search","citationCount":"0","resultStr":"{\"title\":\"Photo-crosslinking of doped magic-sized nanoclusters for the construction of enhanced electrochemiluminescence biosensors†\",\"authors\":\"Junjun Ge, Tengyue Yin, Haoyang Zhang, Yue Cao, Juan Liu, Jun-Jie Zhu, Yang Zhou and Yuanyuan Wang\",\"doi\":\"10.1039/D4SC07800D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS)<small><sub>34</sub></small>:Ag MSCs compared with original (CdS)<small><sub>34</sub></small> MSCs. The resulting BPE-ECL biosensing platform was used for the sensitive detection of glucose with a linear detection range of 10 μM to 1 mM and a detection limit of 3.64 μM. This approach provides a robust strategy to enhance MSC-based ECL biosensing, paving the way for ultrasensitive, stable biosensors for clinical diagnostics and bioanalysis.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 8\",\"pages\":\" 3671-3679\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc07800d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07800d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07800d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photo-crosslinking of doped magic-sized nanoclusters for the construction of enhanced electrochemiluminescence biosensors†
Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS)34:Ag MSCs compared with original (CdS)34 MSCs. The resulting BPE-ECL biosensing platform was used for the sensitive detection of glucose with a linear detection range of 10 μM to 1 mM and a detection limit of 3.64 μM. This approach provides a robust strategy to enhance MSC-based ECL biosensing, paving the way for ultrasensitive, stable biosensors for clinical diagnostics and bioanalysis.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.