Li Wang, Yong Zhou, Zehan Zhou, Shangrong Wu, Lang Xia, Yan Zha, Peng Yang
{"title":"基于Sentinel-2图像的光谱层次机器学习预测农田土壤砷浓度","authors":"Li Wang, Yong Zhou, Zehan Zhou, Shangrong Wu, Lang Xia, Yan Zha, Peng Yang","doi":"10.1109/tgrs.2025.3532678","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"104 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectral Hierarchical Machine Learning for Predicting Arsenic Concentration in Farmland Soil Using Sentinel-2 Imagery\",\"authors\":\"Li Wang, Yong Zhou, Zehan Zhou, Shangrong Wu, Lang Xia, Yan Zha, Peng Yang\",\"doi\":\"10.1109/tgrs.2025.3532678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tgrs.2025.3532678\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tgrs.2025.3532678","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
期刊介绍:
IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.