利用通用机器学习潜力加速复杂合金中基于calphad的相图预测:机遇与挑战

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Siya Zhu, Doğuhan Sarıtürk, Raymundo Arróyave
{"title":"利用通用机器学习潜力加速复杂合金中基于calphad的相图预测:机遇与挑战","authors":"Siya Zhu, Doğuhan Sarıtürk, Raymundo Arróyave","doi":"10.1016/j.actamat.2025.120747","DOIUrl":null,"url":null,"abstract":"Accurate phase diagram prediction is crucial for understanding alloy thermodynamics and advancing materials design. While traditional CALPHAD methods are robust, they are resource-intensive and limited by experimentally assessed data. This work explores the use of machine learning interatomic potentials (MLIPs) such as M3GNet, CHGNet, MACE, SevenNet, and ORB to significantly accelerate phase diagram calculations by using the <em>Alloy Theoretic Automated Toolkit</em> (ATAT) to map calculations of the energies and free energies of atomistic systems to CALPHAD-compatible thermodynamic descriptions. Using case studies including <figure><img alt=\"\" height=\"9\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1001.jpg\"/></figure> , <figure><img alt=\"\" height=\"9\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1002.jpg\"/></figure> , and <figure><img alt=\"\" height=\"8\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1003.jpg\"/></figure> , we demonstrate that MLIPs, particularly ORB, achieve computational speedups exceeding three orders of magnitude compared to DFT while maintaining phase stability predictions within acceptable accuracy. Extending this approach to liquid phases and ternary systems like <figure><img alt=\"\" height=\"9\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1004.jpg\"/></figure> highlights its versatility for high-entropy alloys and complex chemical spaces. This work demonstrates that MLIPs, integrated with tools like ATAT within a CALPHAD framework, provide an efficient and accurate framework for high-throughput thermodynamic modeling, enabling rapid exploration of novel alloy systems. While many challenges remain to be addressed, the accuracy of some of these MLIPs (ORB in particular) are on the verge of paving the way toward high-throughput generation of CALPHAD thermodynamic descriptions of multi-component, multi-phase alloy systems.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"50 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating CALPHAD-based phase diagram predictions in complex alloys using universal machine learning potentials: Opportunities and challenges\",\"authors\":\"Siya Zhu, Doğuhan Sarıtürk, Raymundo Arróyave\",\"doi\":\"10.1016/j.actamat.2025.120747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate phase diagram prediction is crucial for understanding alloy thermodynamics and advancing materials design. While traditional CALPHAD methods are robust, they are resource-intensive and limited by experimentally assessed data. This work explores the use of machine learning interatomic potentials (MLIPs) such as M3GNet, CHGNet, MACE, SevenNet, and ORB to significantly accelerate phase diagram calculations by using the <em>Alloy Theoretic Automated Toolkit</em> (ATAT) to map calculations of the energies and free energies of atomistic systems to CALPHAD-compatible thermodynamic descriptions. Using case studies including <figure><img alt=\\\"\\\" height=\\\"9\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1001.jpg\\\"/></figure> , <figure><img alt=\\\"\\\" height=\\\"9\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1002.jpg\\\"/></figure> , and <figure><img alt=\\\"\\\" height=\\\"8\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1003.jpg\\\"/></figure> , we demonstrate that MLIPs, particularly ORB, achieve computational speedups exceeding three orders of magnitude compared to DFT while maintaining phase stability predictions within acceptable accuracy. Extending this approach to liquid phases and ternary systems like <figure><img alt=\\\"\\\" height=\\\"9\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645425000400-fx1004.jpg\\\"/></figure> highlights its versatility for high-entropy alloys and complex chemical spaces. This work demonstrates that MLIPs, integrated with tools like ATAT within a CALPHAD framework, provide an efficient and accurate framework for high-throughput thermodynamic modeling, enabling rapid exploration of novel alloy systems. While many challenges remain to be addressed, the accuracy of some of these MLIPs (ORB in particular) are on the verge of paving the way toward high-throughput generation of CALPHAD thermodynamic descriptions of multi-component, multi-phase alloy systems.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.120747\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.120747","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确的相图预测对于理解合金热力学和推进材料设计至关重要。虽然传统的CALPHAD方法是稳健的,但它们是资源密集型的,并且受到实验评估数据的限制。这项工作探索了机器学习原子间势(MLIPs)的使用,如M3GNet、CHGNet、MACE、SevenNet和ORB,通过使用合金理论自动化工具包(ATAT)将原子系统的能量和自由能的计算映射到calphad兼容的热力学描述,从而显着加速相图计算。通过案例研究,包括,和,我们证明MLIPs,特别是ORB,与DFT相比,实现了超过三个数量级的计算速度,同时将相位稳定性预测保持在可接受的精度范围内。将这种方法扩展到液相和三元系统中,突出了它在高熵合金和复杂化学空间中的多功能性。这项工作表明,MLIPs与CALPHAD框架内的ATAT等工具集成在一起,为高通量热力学建模提供了一个高效、准确的框架,从而能够快速探索新型合金系统。虽然仍有许多挑战有待解决,但其中一些mlip(特别是ORB)的准确性即将为多组分、多相合金系统的calphhad热力学描述的高通量生成铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating CALPHAD-based phase diagram predictions in complex alloys using universal machine learning potentials: Opportunities and challenges
Accurate phase diagram prediction is crucial for understanding alloy thermodynamics and advancing materials design. While traditional CALPHAD methods are robust, they are resource-intensive and limited by experimentally assessed data. This work explores the use of machine learning interatomic potentials (MLIPs) such as M3GNet, CHGNet, MACE, SevenNet, and ORB to significantly accelerate phase diagram calculations by using the Alloy Theoretic Automated Toolkit (ATAT) to map calculations of the energies and free energies of atomistic systems to CALPHAD-compatible thermodynamic descriptions. Using case studies including
,
, and
, we demonstrate that MLIPs, particularly ORB, achieve computational speedups exceeding three orders of magnitude compared to DFT while maintaining phase stability predictions within acceptable accuracy. Extending this approach to liquid phases and ternary systems like
highlights its versatility for high-entropy alloys and complex chemical spaces. This work demonstrates that MLIPs, integrated with tools like ATAT within a CALPHAD framework, provide an efficient and accurate framework for high-throughput thermodynamic modeling, enabling rapid exploration of novel alloy systems. While many challenges remain to be addressed, the accuracy of some of these MLIPs (ORB in particular) are on the verge of paving the way toward high-throughput generation of CALPHAD thermodynamic descriptions of multi-component, multi-phase alloy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信