EPISeg:利用开放获取的多中心数据对回声平面图像进行脊髓自动分割。

Rohan Banerjee, Merve Kaptan, Alexandra Tinnermann, Ali Khatibi, Alice Dabbagh, Christian Büchel, Christian W Kündig, Christine S W Law, Dario Pfyffer, David J Lythgoe, Dimitra Tsivaka, Dimitri Van De Ville, Falk Eippert, Fauziyya Muhammad, Gary H Glover, Gergely David, Grace Haynes, Jan Haaker, Jonathan C W Brooks, Jürgen Finsterbusch, Katherine T Martucci, Kimberly J Hemmerling, Mahdi Mobarak-Abadi, Mark A Hoggarth, Matthew A Howard, Molly G Bright, Nawal Kinany, Olivia S Kowalczyk, Patrick Freund, Robert L Barry, Sean Mackey, Shahabeddin Vahdat, Simon Schading, Stephen B McMahon, Todd Parish, Véronique Marchand-Pauvert, Yufen Chen, Zachary A Smith, Kenneth A Weber, Benjamin De Leener, Julien Cohen-Adad
{"title":"EPISeg:利用开放获取的多中心数据对回声平面图像进行脊髓自动分割。","authors":"Rohan Banerjee, Merve Kaptan, Alexandra Tinnermann, Ali Khatibi, Alice Dabbagh, Christian Büchel, Christian W Kündig, Christine S W Law, Dario Pfyffer, David J Lythgoe, Dimitra Tsivaka, Dimitri Van De Ville, Falk Eippert, Fauziyya Muhammad, Gary H Glover, Gergely David, Grace Haynes, Jan Haaker, Jonathan C W Brooks, Jürgen Finsterbusch, Katherine T Martucci, Kimberly J Hemmerling, Mahdi Mobarak-Abadi, Mark A Hoggarth, Matthew A Howard, Molly G Bright, Nawal Kinany, Olivia S Kowalczyk, Patrick Freund, Robert L Barry, Sean Mackey, Shahabeddin Vahdat, Simon Schading, Stephen B McMahon, Todd Parish, Véronique Marchand-Pauvert, Yufen Chen, Zachary A Smith, Kenneth A Weber, Benjamin De Leener, Julien Cohen-Adad","doi":"10.1101/2025.01.07.631402","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro [https://openneuro.org/datasets/ds005143/versions/1.3.0], and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at [https://github.com/sct-pipeline/fmri-segmentation/], and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741348/pdf/","citationCount":"0","resultStr":"{\"title\":\"EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data.\",\"authors\":\"Rohan Banerjee, Merve Kaptan, Alexandra Tinnermann, Ali Khatibi, Alice Dabbagh, Christian Büchel, Christian W Kündig, Christine S W Law, Dario Pfyffer, David J Lythgoe, Dimitra Tsivaka, Dimitri Van De Ville, Falk Eippert, Fauziyya Muhammad, Gary H Glover, Gergely David, Grace Haynes, Jan Haaker, Jonathan C W Brooks, Jürgen Finsterbusch, Katherine T Martucci, Kimberly J Hemmerling, Mahdi Mobarak-Abadi, Mark A Hoggarth, Matthew A Howard, Molly G Bright, Nawal Kinany, Olivia S Kowalczyk, Patrick Freund, Robert L Barry, Sean Mackey, Shahabeddin Vahdat, Simon Schading, Stephen B McMahon, Todd Parish, Véronique Marchand-Pauvert, Yufen Chen, Zachary A Smith, Kenneth A Weber, Benjamin De Leener, Julien Cohen-Adad\",\"doi\":\"10.1101/2025.01.07.631402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro [https://openneuro.org/datasets/ds005143/versions/1.3.0], and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at [https://github.com/sct-pipeline/fmri-segmentation/], and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.01.07.631402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.07.631402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓的功能性磁共振成像(fMRI)与研究感觉、运动和自主神经功能有关。脊髓功能磁共振成像(fMRI)数据的预处理包括在梯度回波回波平面成像(EPI)图像上对脊髓进行分割。目前的自动分割方法不能很好地处理这些数据,因为空间分辨率低,易受影响的伪影导致失真和信号丢失,重影和运动相关的伪影。因此,这个分割任务需要大量的手工工作,这需要时间,而且容易产生用户偏见。在这项工作中,我们(i)收集了一个具有ground-truth分割的脊髓梯度回声EPI多中心数据集,并在OpenNeuro https://openneuro.org/datasets/ds005143/versions/1.3.0上共享;(ii)开发了一个基于深度学习的模型EPISeg,用于梯度回声EPI数据的脊髓自动分割。与其他可用的脊髓分割模型相比,我们观察到在分割质量方面有显着改善。我们的模型对不同的采集协议以及fMRI数据中常见的伪影具有弹性。培训代码可在https://github.com/sct-pipeline/fmri-segmentation/上获得,该模型已作为命令行工具集成到脊髓工具箱中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data.

Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro [https://openneuro.org/datasets/ds005143/versions/1.3.0], and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at [https://github.com/sct-pipeline/fmri-segmentation/], and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信