{"title":"基于板栗壳的生物质碳点用于磷酸盐和盐酸四环素敏感检测的探索。","authors":"Zirui Yin, Haowei Wang, Xiaodan Tang, Mengshi Mou, Hongmei Yu, Huiyong Wang","doi":"10.1016/j.saa.2025.125746","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance. Herein, to enhance the conversion and utilization of high-value biomass waste, biomass-derived carbon dots (LZ-NCDs) emitting green fluorescence with a quantum yield of 44 % were synthesized in a one-step hydrothermal process using chestnut shell biomass waste as a carbon source and nitrogen doping technology. Based on the dynamic quenching mechanism, a highly sensitive method for effectively identifying PO<sub>4</sub><sup>3-</sup> using LZ-NCDs fluorescence probe was constructed, with a linear range of 0.1-10 µmol/L and a detection limit of 43.0 nmol/L. A quenched fluorescent probe, LZ-NCDs for the determination of TC, was fabricated through the synergistic effects of inner filter effect and static quenching, exhibiting a linear range from 0.05 to 10 µmol/L with a detection limit of 16.8 nmol/L. The successful determination of PO<sub>4</sub><sup>3-</sup> and TC in actual samples was achieved. The two different quenching mechanisms indicate that LZ-NCDs are expected to become potential sensing materials for the real-time monitoring of PO<sub>4</sub><sup>3-</sup> and TC in organisms and food, which is very important for our health.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125746"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of biomass-derived carbon dots based on chestnut shell for the sensitive detection of phosphate and tetracycline hydrochloride.\",\"authors\":\"Zirui Yin, Haowei Wang, Xiaodan Tang, Mengshi Mou, Hongmei Yu, Huiyong Wang\",\"doi\":\"10.1016/j.saa.2025.125746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance. Herein, to enhance the conversion and utilization of high-value biomass waste, biomass-derived carbon dots (LZ-NCDs) emitting green fluorescence with a quantum yield of 44 % were synthesized in a one-step hydrothermal process using chestnut shell biomass waste as a carbon source and nitrogen doping technology. Based on the dynamic quenching mechanism, a highly sensitive method for effectively identifying PO<sub>4</sub><sup>3-</sup> using LZ-NCDs fluorescence probe was constructed, with a linear range of 0.1-10 µmol/L and a detection limit of 43.0 nmol/L. A quenched fluorescent probe, LZ-NCDs for the determination of TC, was fabricated through the synergistic effects of inner filter effect and static quenching, exhibiting a linear range from 0.05 to 10 µmol/L with a detection limit of 16.8 nmol/L. The successful determination of PO<sub>4</sub><sup>3-</sup> and TC in actual samples was achieved. The two different quenching mechanisms indicate that LZ-NCDs are expected to become potential sensing materials for the real-time monitoring of PO<sub>4</sub><sup>3-</sup> and TC in organisms and food, which is very important for our health.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"330 \",\"pages\":\"125746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.125746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.125746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Exploration of biomass-derived carbon dots based on chestnut shell for the sensitive detection of phosphate and tetracycline hydrochloride.
Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance. Herein, to enhance the conversion and utilization of high-value biomass waste, biomass-derived carbon dots (LZ-NCDs) emitting green fluorescence with a quantum yield of 44 % were synthesized in a one-step hydrothermal process using chestnut shell biomass waste as a carbon source and nitrogen doping technology. Based on the dynamic quenching mechanism, a highly sensitive method for effectively identifying PO43- using LZ-NCDs fluorescence probe was constructed, with a linear range of 0.1-10 µmol/L and a detection limit of 43.0 nmol/L. A quenched fluorescent probe, LZ-NCDs for the determination of TC, was fabricated through the synergistic effects of inner filter effect and static quenching, exhibiting a linear range from 0.05 to 10 µmol/L with a detection limit of 16.8 nmol/L. The successful determination of PO43- and TC in actual samples was achieved. The two different quenching mechanisms indicate that LZ-NCDs are expected to become potential sensing materials for the real-time monitoring of PO43- and TC in organisms and food, which is very important for our health.