{"title":"探索米莫霉素作为Janus激酶2抑制剂:计算和实验相结合的研究。","authors":"Kamonpan Sanachai , Kowit Hengphasatporn , Supakarn Chamni , Khanit Suwanborirux , Panupong Mahalapbutr , Yasuteru Shigeta , Supaphorn Seetaha , Kiattawee Choowongkomon , Thanyada Rungrotmongkol","doi":"10.1016/j.compbiolchem.2025.108346","DOIUrl":null,"url":null,"abstract":"<div><div>Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both <em>in vitro</em> and <em>in silico</em> approaches. We performed a kinase assay to measure the IC<sub>50</sub> of mimosamycin for JAK2 inhibition, which was found to be 22.52 ± 0.87 nM. Additionally, we utilized molecular docking, molecular dynamics simulations, and free energy calculations to investigate the inhibitory mechanism at the atomic level. Our findings revealed that mimosamycin interacts with JAK2 at several key regions: the hinge-conserved region (M929, Y931, L932, and G935), the G loop (L855 and V863), and the catalytic loop (L983). To enhance the binding affinity of mimosamycin toward JAK2, we designed derivatives with propanenitrile and cyclopentane substitutions on the naphthoquinone core structure. Notably, these newly designed analogs exhibited promising binding patterns against JAK2. These insights could aid in the rational development of novel JAK2 inhibitors, with potential applications in the treatment of leukemia and related diseases.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108346"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring mimosamycin as a Janus kinase 2 inhibitor: A combined computational and experimental investigation\",\"authors\":\"Kamonpan Sanachai , Kowit Hengphasatporn , Supakarn Chamni , Khanit Suwanborirux , Panupong Mahalapbutr , Yasuteru Shigeta , Supaphorn Seetaha , Kiattawee Choowongkomon , Thanyada Rungrotmongkol\",\"doi\":\"10.1016/j.compbiolchem.2025.108346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both <em>in vitro</em> and <em>in silico</em> approaches. We performed a kinase assay to measure the IC<sub>50</sub> of mimosamycin for JAK2 inhibition, which was found to be 22.52 ± 0.87 nM. Additionally, we utilized molecular docking, molecular dynamics simulations, and free energy calculations to investigate the inhibitory mechanism at the atomic level. Our findings revealed that mimosamycin interacts with JAK2 at several key regions: the hinge-conserved region (M929, Y931, L932, and G935), the G loop (L855 and V863), and the catalytic loop (L983). To enhance the binding affinity of mimosamycin toward JAK2, we designed derivatives with propanenitrile and cyclopentane substitutions on the naphthoquinone core structure. Notably, these newly designed analogs exhibited promising binding patterns against JAK2. These insights could aid in the rational development of novel JAK2 inhibitors, with potential applications in the treatment of leukemia and related diseases.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108346\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927125000064\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring mimosamycin as a Janus kinase 2 inhibitor: A combined computational and experimental investigation
Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both in vitro and in silico approaches. We performed a kinase assay to measure the IC50 of mimosamycin for JAK2 inhibition, which was found to be 22.52 ± 0.87 nM. Additionally, we utilized molecular docking, molecular dynamics simulations, and free energy calculations to investigate the inhibitory mechanism at the atomic level. Our findings revealed that mimosamycin interacts with JAK2 at several key regions: the hinge-conserved region (M929, Y931, L932, and G935), the G loop (L855 and V863), and the catalytic loop (L983). To enhance the binding affinity of mimosamycin toward JAK2, we designed derivatives with propanenitrile and cyclopentane substitutions on the naphthoquinone core structure. Notably, these newly designed analogs exhibited promising binding patterns against JAK2. These insights could aid in the rational development of novel JAK2 inhibitors, with potential applications in the treatment of leukemia and related diseases.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.