{"title":"利用统计分析方法探讨人类转录组m6A修饰位点机器学习识别方法中数据不平衡的影响因素。","authors":"Mingxin Li, Rujun Li, Yichi Zhang, Shiyu Peng, Zhibin Lv","doi":"10.1016/j.compbiolchem.2025.108351","DOIUrl":null,"url":null,"abstract":"<div><div>RNA methylation, particularly through m6A modification, represents a crucial epigenetic mechanism that governs gene expression and influences a range of biological functions. Accurate identification of methylation sites is crucial for understanding their biological functions. Traditional experimental methods, however, are often costly and can be influenced by experimental conditions, making machine learning, especially deep learning techniques, a vital tool for m6A site identification. Despite their utility, current machine learning models struggle with unbalanced datasets, a common issue in bioinformatics. This study addresses the RNA methylation site data imbalance problem from three key perspectives: feature encoding representation, deep learning models, and data resampling strategies. Using the K-mer one-hot encoding strategy, we effectively extracted RNA sequence features and developed classification prediction models utilizing long short-term memory networks (LSTM) and its variant, Multiplicative LSTM (mLSTM). We further enhanced model performance by ensemble and weighted strategy models. Additionally, we utilized the sequence generative adversarial network (SeqGAN) and the synthetic minority resampling technique (SMOTE) to construct balanced datasets for RNA methylation sites. The prediction results were rigorously analyzed using the Wilcoxon test and multivariate linear regression to explore the effects of different K-mer values, model architectures, and sampling methods on classification outcomes. The analysis underscored the significant impact of feature selection, model architecture, and sampling techniques in addressing data imbalance. Notably, the optimal prediction performance was achieved with a K value of 5 using the mLSTM-ensemble model. These findings not only offer new insights and methodologies for RNA methylation site identification but also provide valuable guidance for addressing similar challenges in bioinformatics.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108351"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using statistical analysis to explore the influencing factors of data imbalance for machine learning identification methods of human transcriptome m6A modification sites\",\"authors\":\"Mingxin Li, Rujun Li, Yichi Zhang, Shiyu Peng, Zhibin Lv\",\"doi\":\"10.1016/j.compbiolchem.2025.108351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>RNA methylation, particularly through m6A modification, represents a crucial epigenetic mechanism that governs gene expression and influences a range of biological functions. Accurate identification of methylation sites is crucial for understanding their biological functions. Traditional experimental methods, however, are often costly and can be influenced by experimental conditions, making machine learning, especially deep learning techniques, a vital tool for m6A site identification. Despite their utility, current machine learning models struggle with unbalanced datasets, a common issue in bioinformatics. This study addresses the RNA methylation site data imbalance problem from three key perspectives: feature encoding representation, deep learning models, and data resampling strategies. Using the K-mer one-hot encoding strategy, we effectively extracted RNA sequence features and developed classification prediction models utilizing long short-term memory networks (LSTM) and its variant, Multiplicative LSTM (mLSTM). We further enhanced model performance by ensemble and weighted strategy models. Additionally, we utilized the sequence generative adversarial network (SeqGAN) and the synthetic minority resampling technique (SMOTE) to construct balanced datasets for RNA methylation sites. The prediction results were rigorously analyzed using the Wilcoxon test and multivariate linear regression to explore the effects of different K-mer values, model architectures, and sampling methods on classification outcomes. The analysis underscored the significant impact of feature selection, model architecture, and sampling techniques in addressing data imbalance. Notably, the optimal prediction performance was achieved with a K value of 5 using the mLSTM-ensemble model. These findings not only offer new insights and methodologies for RNA methylation site identification but also provide valuable guidance for addressing similar challenges in bioinformatics.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108351\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927125000118\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000118","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Using statistical analysis to explore the influencing factors of data imbalance for machine learning identification methods of human transcriptome m6A modification sites
RNA methylation, particularly through m6A modification, represents a crucial epigenetic mechanism that governs gene expression and influences a range of biological functions. Accurate identification of methylation sites is crucial for understanding their biological functions. Traditional experimental methods, however, are often costly and can be influenced by experimental conditions, making machine learning, especially deep learning techniques, a vital tool for m6A site identification. Despite their utility, current machine learning models struggle with unbalanced datasets, a common issue in bioinformatics. This study addresses the RNA methylation site data imbalance problem from three key perspectives: feature encoding representation, deep learning models, and data resampling strategies. Using the K-mer one-hot encoding strategy, we effectively extracted RNA sequence features and developed classification prediction models utilizing long short-term memory networks (LSTM) and its variant, Multiplicative LSTM (mLSTM). We further enhanced model performance by ensemble and weighted strategy models. Additionally, we utilized the sequence generative adversarial network (SeqGAN) and the synthetic minority resampling technique (SMOTE) to construct balanced datasets for RNA methylation sites. The prediction results were rigorously analyzed using the Wilcoxon test and multivariate linear regression to explore the effects of different K-mer values, model architectures, and sampling methods on classification outcomes. The analysis underscored the significant impact of feature selection, model architecture, and sampling techniques in addressing data imbalance. Notably, the optimal prediction performance was achieved with a K value of 5 using the mLSTM-ensemble model. These findings not only offer new insights and methodologies for RNA methylation site identification but also provide valuable guidance for addressing similar challenges in bioinformatics.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.