Nandini Sharma , Yuka Otsuka , Louis Scampavia , Timothy P. Spicer , Jarrod B. French
{"title":"磷酸核糖基甲酰基甘氨酸合成酶的高通量测定。","authors":"Nandini Sharma , Yuka Otsuka , Louis Scampavia , Timothy P. Spicer , Jarrod B. French","doi":"10.1016/j.slasd.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in <em>de novo</em> purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity. Here, we describe a new continuous, spectrophotometric assay for the synthase domain of PFAS that is amenable to high-throughput screening (HTS). This mechanism-based fluorescent assay makes use of the acid phosphatase substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). PFAS catalyzes the turnover of DiFMUP with a <em>K<sub>M</sub></em> of 108 ± 7 µM. After optimization and miniaturization of the assay for 1,536-well format, we conducted a pilot HTS using the LOPAC<sup>1280</sup> library. The assay performed extremely well, with an average Z′ of 0.94 ± 0.02, average signal to noise of 5.01 ± 0.06, excellent inter plate correlation, and a hit rate of 1.18 %. This assay provides a critically needed tool to advance the study of PFAS enzymology and will be foundational for the discovery of small molecule inhibitors both as functional probes and for the basis of new drug development.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"31 ","pages":"Article 100212"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high throughput assay for phosphoribosylformylglycinamidine synthase\",\"authors\":\"Nandini Sharma , Yuka Otsuka , Louis Scampavia , Timothy P. Spicer , Jarrod B. French\",\"doi\":\"10.1016/j.slasd.2025.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in <em>de novo</em> purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity. Here, we describe a new continuous, spectrophotometric assay for the synthase domain of PFAS that is amenable to high-throughput screening (HTS). This mechanism-based fluorescent assay makes use of the acid phosphatase substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). PFAS catalyzes the turnover of DiFMUP with a <em>K<sub>M</sub></em> of 108 ± 7 µM. After optimization and miniaturization of the assay for 1,536-well format, we conducted a pilot HTS using the LOPAC<sup>1280</sup> library. The assay performed extremely well, with an average Z′ of 0.94 ± 0.02, average signal to noise of 5.01 ± 0.06, excellent inter plate correlation, and a hit rate of 1.18 %. This assay provides a critically needed tool to advance the study of PFAS enzymology and will be foundational for the discovery of small molecule inhibitors both as functional probes and for the basis of new drug development.</div></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"31 \",\"pages\":\"Article 100212\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S247255522500005X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S247255522500005X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A high throughput assay for phosphoribosylformylglycinamidine synthase
Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in de novo purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity. Here, we describe a new continuous, spectrophotometric assay for the synthase domain of PFAS that is amenable to high-throughput screening (HTS). This mechanism-based fluorescent assay makes use of the acid phosphatase substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). PFAS catalyzes the turnover of DiFMUP with a KM of 108 ± 7 µM. After optimization and miniaturization of the assay for 1,536-well format, we conducted a pilot HTS using the LOPAC1280 library. The assay performed extremely well, with an average Z′ of 0.94 ± 0.02, average signal to noise of 5.01 ± 0.06, excellent inter plate correlation, and a hit rate of 1.18 %. This assay provides a critically needed tool to advance the study of PFAS enzymology and will be foundational for the discovery of small molecule inhibitors both as functional probes and for the basis of new drug development.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).