从实验室信息系统和电子健康记录中自动提取标准化抗生素耐药性和处方数据:叙述性回顾。

Frontiers in antibiotics Pub Date : 2024-03-08 eCollection Date: 2024-01-01 DOI:10.3389/frabi.2024.1380380
Alice Cappello, Ylenia Murgia, Daniele Roberto Giacobbe, Sara Mora, Roberta Gazzarata, Nicola Rosso, Mauro Giacomini, Matteo Bassetti
{"title":"从实验室信息系统和电子健康记录中自动提取标准化抗生素耐药性和处方数据:叙述性回顾。","authors":"Alice Cappello, Ylenia Murgia, Daniele Roberto Giacobbe, Sara Mora, Roberta Gazzarata, Nicola Rosso, Mauro Giacomini, Matteo Bassetti","doi":"10.3389/frabi.2024.1380380","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance in bacteria has been associated with significant morbidity and mortality in hospitalized patients. In the era of big data and of the consequent frequent need for large study populations, manual collection of data for research studies on antimicrobial resistance and antibiotic use has become extremely time-consuming and sometimes impossible to be accomplished by overwhelmed healthcare personnel. In this review, we discuss relevant concepts pertaining to the automated extraction of antibiotic resistance and antibiotic prescription data from laboratory information systems and electronic health records to be used in clinical studies, starting from the currently available literature on the topic. Leveraging automatic extraction and standardization of antimicrobial resistance and antibiotic prescription data is an tremendous opportunity to improve the care of future patients with severe infections caused by multidrug-resistant organisms, and should not be missed.</p>","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"3 ","pages":"1380380"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review.\",\"authors\":\"Alice Cappello, Ylenia Murgia, Daniele Roberto Giacobbe, Sara Mora, Roberta Gazzarata, Nicola Rosso, Mauro Giacomini, Matteo Bassetti\",\"doi\":\"10.3389/frabi.2024.1380380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance in bacteria has been associated with significant morbidity and mortality in hospitalized patients. In the era of big data and of the consequent frequent need for large study populations, manual collection of data for research studies on antimicrobial resistance and antibiotic use has become extremely time-consuming and sometimes impossible to be accomplished by overwhelmed healthcare personnel. In this review, we discuss relevant concepts pertaining to the automated extraction of antibiotic resistance and antibiotic prescription data from laboratory information systems and electronic health records to be used in clinical studies, starting from the currently available literature on the topic. Leveraging automatic extraction and standardization of antimicrobial resistance and antibiotic prescription data is an tremendous opportunity to improve the care of future patients with severe infections caused by multidrug-resistant organisms, and should not be missed.</p>\",\"PeriodicalId\":73065,\"journal\":{\"name\":\"Frontiers in antibiotics\",\"volume\":\"3 \",\"pages\":\"1380380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in antibiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frabi.2024.1380380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in antibiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frabi.2024.1380380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌的抗菌素耐药性与住院患者的显著发病率和死亡率有关。在大数据时代,因此经常需要大量的研究人群,人工收集抗菌素耐药性和抗生素使用的研究数据变得非常耗时,有时不堪重负的卫生保健人员无法完成。在这篇综述中,我们讨论了从实验室信息系统和临床研究中使用的电子健康记录中自动提取抗生素耐药性和抗生素处方数据的相关概念,从目前有关该主题的文献开始。利用抗菌药物耐药性和抗生素处方数据的自动提取和标准化是一个巨大的机会,可以改善未来由多重耐药生物引起的严重感染患者的护理,不应错过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review.

Antimicrobial resistance in bacteria has been associated with significant morbidity and mortality in hospitalized patients. In the era of big data and of the consequent frequent need for large study populations, manual collection of data for research studies on antimicrobial resistance and antibiotic use has become extremely time-consuming and sometimes impossible to be accomplished by overwhelmed healthcare personnel. In this review, we discuss relevant concepts pertaining to the automated extraction of antibiotic resistance and antibiotic prescription data from laboratory information systems and electronic health records to be used in clinical studies, starting from the currently available literature on the topic. Leveraging automatic extraction and standardization of antimicrobial resistance and antibiotic prescription data is an tremendous opportunity to improve the care of future patients with severe infections caused by multidrug-resistant organisms, and should not be missed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信