Ragul Gowthaman, Minjae Park, Rui Yin, Johnathan D Guest, Brian G Pierce
{"title":"AlphaFold和抗体-抗原和其他靶点的对接方法:CAPRI第47-55轮的见解","authors":"Ragul Gowthaman, Minjae Park, Rui Yin, Johnathan D Guest, Brian G Pierce","doi":"10.1002/prot.26801","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein-protein and protein-DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near-native models for an antibody-peptide target, and a highly accurate (but low ranked) model for an antibody-MHC complex. These results underscore the utility of AlphaFold-based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlphaFold and Docking Approaches for Antibody-Antigen and Other Targets: Insights From CAPRI Rounds 47-55.\",\"authors\":\"Ragul Gowthaman, Minjae Park, Rui Yin, Johnathan D Guest, Brian G Pierce\",\"doi\":\"10.1002/prot.26801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein-protein and protein-DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near-native models for an antibody-peptide target, and a highly accurate (but low ranked) model for an antibody-MHC complex. These results underscore the utility of AlphaFold-based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26801\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26801","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
AlphaFold and Docking Approaches for Antibody-Antigen and Other Targets: Insights From CAPRI Rounds 47-55.
Accurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein-protein and protein-DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near-native models for an antibody-peptide target, and a highly accurate (but low ranked) model for an antibody-MHC complex. These results underscore the utility of AlphaFold-based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.