{"title":"真实世界数据合成控制的合格标准中缺少数据。","authors":"Liang Li, Thomas Jemielita, Cong Chen","doi":"10.1080/10543406.2025.2450330","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized clinical trials (RCTs) can benefit from using Real-World Data (RWD) as a supplementary data source to enhance their analysis. An Augmented RCT combines randomized treatment and control groups with synthetic controls derived from RWD. This way, the trial can achieve less prospective enrollment, higher statistical power, and lower costs. However, to ensure scientific validity, the synthetic controls must satisfy the same eligibility criteria as the trial participants. A major challenge is that RWD often have missing data that hinder the eligibility assessment. This problem has been overlooked in the literature and this paper offers statistical solutions to address it. We use multiple imputations to handle missing data in the variables involved in the eligibility criteria. We also propose a generalized propensity score weighting procedure to adjust for the life expectancy requirement, a common eligibility criterion in oncology clinical trials but usually unavailable in RWD. Since the life expectancy is an unmeasured confounder, we discuss the statistical assumptions required to correct its bias. We validate the proposed solutions through simulation studies and the analysis of an Augmented RCT in oncology.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing data in the eligibility criteria of synthetic controls from real-world data.\",\"authors\":\"Liang Li, Thomas Jemielita, Cong Chen\",\"doi\":\"10.1080/10543406.2025.2450330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Randomized clinical trials (RCTs) can benefit from using Real-World Data (RWD) as a supplementary data source to enhance their analysis. An Augmented RCT combines randomized treatment and control groups with synthetic controls derived from RWD. This way, the trial can achieve less prospective enrollment, higher statistical power, and lower costs. However, to ensure scientific validity, the synthetic controls must satisfy the same eligibility criteria as the trial participants. A major challenge is that RWD often have missing data that hinder the eligibility assessment. This problem has been overlooked in the literature and this paper offers statistical solutions to address it. We use multiple imputations to handle missing data in the variables involved in the eligibility criteria. We also propose a generalized propensity score weighting procedure to adjust for the life expectancy requirement, a common eligibility criterion in oncology clinical trials but usually unavailable in RWD. Since the life expectancy is an unmeasured confounder, we discuss the statistical assumptions required to correct its bias. We validate the proposed solutions through simulation studies and the analysis of an Augmented RCT in oncology.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2450330\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2450330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Missing data in the eligibility criteria of synthetic controls from real-world data.
Randomized clinical trials (RCTs) can benefit from using Real-World Data (RWD) as a supplementary data source to enhance their analysis. An Augmented RCT combines randomized treatment and control groups with synthetic controls derived from RWD. This way, the trial can achieve less prospective enrollment, higher statistical power, and lower costs. However, to ensure scientific validity, the synthetic controls must satisfy the same eligibility criteria as the trial participants. A major challenge is that RWD often have missing data that hinder the eligibility assessment. This problem has been overlooked in the literature and this paper offers statistical solutions to address it. We use multiple imputations to handle missing data in the variables involved in the eligibility criteria. We also propose a generalized propensity score weighting procedure to adjust for the life expectancy requirement, a common eligibility criterion in oncology clinical trials but usually unavailable in RWD. Since the life expectancy is an unmeasured confounder, we discuss the statistical assumptions required to correct its bias. We validate the proposed solutions through simulation studies and the analysis of an Augmented RCT in oncology.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.