{"title":"具有非均匀随机效应分布的纵向测量和存活时间的贝叶斯节点弯索模型。","authors":"Oludare Ariyo, Kehinde Olobatuyi, Taban Baghfalaki","doi":"10.1080/10543406.2025.2450321","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarkers are measured repeatedly in clinical studies until a pre-defined endpoint, such as death from certain causes, is reached. Such repeated measurements may present a dynamic process for understanding when to expect the study's endpoint. Joint modelling is often employed to handle such a model. Typically, shared random effects are assumed to be common to both the longitudinal component and the study's endpoint. These shared random effects usually assume homogeneous and follow a normal distribution. However, identifying homogeneous subgroups is important when the underlying population is heterogeneous. This issue has received little attention in the literature, particularly for multi-phase longitudinal responses. In this paper, we propose a joint modelling approach for longitudinal and survival models using a bent-cable mixed model for longitudinal measurements and a Weibull distribution for the survival component. We also incorporate a finite mixture of normal distribution assumptions to account for the unobserved heterogeneity in the shared random effects model. A Bayesian MCMC is developed for parameter estimation and inferences. The proposed method is evaluated using simulation studies and the Tehran Lipid and Glucose Study dataset.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-14"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian joint bent-cable model for longitudinal measurements and survival time with heterogeneous random-effects distributions.\",\"authors\":\"Oludare Ariyo, Kehinde Olobatuyi, Taban Baghfalaki\",\"doi\":\"10.1080/10543406.2025.2450321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomarkers are measured repeatedly in clinical studies until a pre-defined endpoint, such as death from certain causes, is reached. Such repeated measurements may present a dynamic process for understanding when to expect the study's endpoint. Joint modelling is often employed to handle such a model. Typically, shared random effects are assumed to be common to both the longitudinal component and the study's endpoint. These shared random effects usually assume homogeneous and follow a normal distribution. However, identifying homogeneous subgroups is important when the underlying population is heterogeneous. This issue has received little attention in the literature, particularly for multi-phase longitudinal responses. In this paper, we propose a joint modelling approach for longitudinal and survival models using a bent-cable mixed model for longitudinal measurements and a Weibull distribution for the survival component. We also incorporate a finite mixture of normal distribution assumptions to account for the unobserved heterogeneity in the shared random effects model. A Bayesian MCMC is developed for parameter estimation and inferences. The proposed method is evaluated using simulation studies and the Tehran Lipid and Glucose Study dataset.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2450321\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2450321","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Bayesian joint bent-cable model for longitudinal measurements and survival time with heterogeneous random-effects distributions.
Biomarkers are measured repeatedly in clinical studies until a pre-defined endpoint, such as death from certain causes, is reached. Such repeated measurements may present a dynamic process for understanding when to expect the study's endpoint. Joint modelling is often employed to handle such a model. Typically, shared random effects are assumed to be common to both the longitudinal component and the study's endpoint. These shared random effects usually assume homogeneous and follow a normal distribution. However, identifying homogeneous subgroups is important when the underlying population is heterogeneous. This issue has received little attention in the literature, particularly for multi-phase longitudinal responses. In this paper, we propose a joint modelling approach for longitudinal and survival models using a bent-cable mixed model for longitudinal measurements and a Weibull distribution for the survival component. We also incorporate a finite mixture of normal distribution assumptions to account for the unobserved heterogeneity in the shared random effects model. A Bayesian MCMC is developed for parameter estimation and inferences. The proposed method is evaluated using simulation studies and the Tehran Lipid and Glucose Study dataset.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.