Tetiana Y Bowley, Mireya C Ortiz, Irina V Lagutina, Mara P Steinkamp, Bridget N Fahy, Bernard Tawfik, Moises Harari-Turquie, Dario Marchetti
{"title":"黑素瘤脑转移CTC特征和CTC:与继发性肝转移相关的B细胞簇:黑素瘤脑-肝转移轴。","authors":"Tetiana Y Bowley, Mireya C Ortiz, Irina V Lagutina, Mara P Steinkamp, Bridget N Fahy, Bernard Tawfik, Moises Harari-Turquie, Dario Marchetti","doi":"10.1158/2767-9764.CRC-24-0498","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM. Here, we hypothesized that CTC-driven MBM secondary metastasis (\"metastasis of metastasis\" per clinical scenarios), has targeted organ specificity for liver. We injected parallel cohorts of immunodeficient and newly-developed humanized NBSGW (HuNBSGW) mice with cells from CTC-derived MBM to identify secondary metastatic patterns. We found the presence of a melanoma brain-liver metastasis axis in humanized NBSGW mice. Further, RNA-Seq analyses of tissues showed a significant upregulation of the RPL/RPS CTC gene signature linked to metastatic spread to liver. Additional RNA-Seq of CTCs from HuNBSGW blood revealed extensive CTC clustering with human B cells in these mice. CTC:B cell clusters were also upregulated in blood of primary melanoma patients, and maintained either in CTC-driven MBM or MBM CTC-derived cells promoting liver metastasis. CTC-generated tumor tissues were interrogated at single-cell gene and protein expression levels (10x Genomics Xenium and HALO spatial biology platforms, respectively). Collectively, our findings suggest that heterotypic CTC:B cell interactions can be critical at multiple stages of metastasis.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A melanoma brain metastasis CTC signature and CTC:B cell clusters associate with secondary liver metastasis: a melanoma brain-liver metastasis axis.\",\"authors\":\"Tetiana Y Bowley, Mireya C Ortiz, Irina V Lagutina, Mara P Steinkamp, Bridget N Fahy, Bernard Tawfik, Moises Harari-Turquie, Dario Marchetti\",\"doi\":\"10.1158/2767-9764.CRC-24-0498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM. Here, we hypothesized that CTC-driven MBM secondary metastasis (\\\"metastasis of metastasis\\\" per clinical scenarios), has targeted organ specificity for liver. We injected parallel cohorts of immunodeficient and newly-developed humanized NBSGW (HuNBSGW) mice with cells from CTC-derived MBM to identify secondary metastatic patterns. We found the presence of a melanoma brain-liver metastasis axis in humanized NBSGW mice. Further, RNA-Seq analyses of tissues showed a significant upregulation of the RPL/RPS CTC gene signature linked to metastatic spread to liver. Additional RNA-Seq of CTCs from HuNBSGW blood revealed extensive CTC clustering with human B cells in these mice. CTC:B cell clusters were also upregulated in blood of primary melanoma patients, and maintained either in CTC-driven MBM or MBM CTC-derived cells promoting liver metastasis. CTC-generated tumor tissues were interrogated at single-cell gene and protein expression levels (10x Genomics Xenium and HALO spatial biology platforms, respectively). Collectively, our findings suggest that heterotypic CTC:B cell interactions can be critical at multiple stages of metastasis.</p>\",\"PeriodicalId\":72516,\"journal\":{\"name\":\"Cancer research communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2767-9764.CRC-24-0498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A melanoma brain metastasis CTC signature and CTC:B cell clusters associate with secondary liver metastasis: a melanoma brain-liver metastasis axis.
Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM. Here, we hypothesized that CTC-driven MBM secondary metastasis ("metastasis of metastasis" per clinical scenarios), has targeted organ specificity for liver. We injected parallel cohorts of immunodeficient and newly-developed humanized NBSGW (HuNBSGW) mice with cells from CTC-derived MBM to identify secondary metastatic patterns. We found the presence of a melanoma brain-liver metastasis axis in humanized NBSGW mice. Further, RNA-Seq analyses of tissues showed a significant upregulation of the RPL/RPS CTC gene signature linked to metastatic spread to liver. Additional RNA-Seq of CTCs from HuNBSGW blood revealed extensive CTC clustering with human B cells in these mice. CTC:B cell clusters were also upregulated in blood of primary melanoma patients, and maintained either in CTC-driven MBM or MBM CTC-derived cells promoting liver metastasis. CTC-generated tumor tissues were interrogated at single-cell gene and protein expression levels (10x Genomics Xenium and HALO spatial biology platforms, respectively). Collectively, our findings suggest that heterotypic CTC:B cell interactions can be critical at multiple stages of metastasis.