c2mal:级联网络引导的类平衡多原型辅助学习用于无源域自适应医学图像分割。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wei Zhou, Xuekun Yang, Jianhang Ji, Yugen Yi
{"title":"c2mal:级联网络引导的类平衡多原型辅助学习用于无源域自适应医学图像分割。","authors":"Wei Zhou, Xuekun Yang, Jianhang Ji, Yugen Yi","doi":"10.1007/s11517-025-03287-0","DOIUrl":null,"url":null,"abstract":"<p><p>Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance. This paper presents a pioneering SFDA framework, named cascaded network-guided class-balanced multi-prototype auxiliary learning (C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> MAL), to enhance model stability. Firstly, we introduce the cascaded translation-segmentation network (CTS-Net), which employs iterative learning between translation and segmentation networks to generate accurate pseudo-labels. The CTS-Net employs a translation network to synthesize target-like images from unreliable predictions of the initial target domain images. The synthesized results refine segmentation network training, ensuring semantic alignment and minimizing visual disparities. Subsequently, reliable pseudo-labels guide the class-balanced multi-prototype auxiliary learning network (CMAL-Net) for effective model adaptation. CMAL-Net incorporates a new multi-prototype auxiliary learning strategy with a memory network to complement source domain data. We propose a class-balanced calibration loss and multi-prototype-guided symmetry cross-entropy loss to tackle class imbalance issue and enhance model adaptability to the target domain. Extensive experiments on four benchmark fundus image datasets validate the superiority of C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> MAL over state-of-the-art methods, especially in scenarios with significant domain shifts. Our code is available at https://github.com/yxk-art/C2MAL .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">C <ns0:math><ns0:mmultiscripts><ns0:mrow /> <ns0:mrow /> <ns0:mn>2</ns0:mn></ns0:mmultiscripts> </ns0:math> MAL: cascaded network-guided class-balanced multi-prototype auxiliary learning for source-free domain adaptive medical image segmentation.\",\"authors\":\"Wei Zhou, Xuekun Yang, Jianhang Ji, Yugen Yi\",\"doi\":\"10.1007/s11517-025-03287-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance. This paper presents a pioneering SFDA framework, named cascaded network-guided class-balanced multi-prototype auxiliary learning (C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> MAL), to enhance model stability. Firstly, we introduce the cascaded translation-segmentation network (CTS-Net), which employs iterative learning between translation and segmentation networks to generate accurate pseudo-labels. The CTS-Net employs a translation network to synthesize target-like images from unreliable predictions of the initial target domain images. The synthesized results refine segmentation network training, ensuring semantic alignment and minimizing visual disparities. Subsequently, reliable pseudo-labels guide the class-balanced multi-prototype auxiliary learning network (CMAL-Net) for effective model adaptation. CMAL-Net incorporates a new multi-prototype auxiliary learning strategy with a memory network to complement source domain data. We propose a class-balanced calibration loss and multi-prototype-guided symmetry cross-entropy loss to tackle class imbalance issue and enhance model adaptability to the target domain. Extensive experiments on four benchmark fundus image datasets validate the superiority of C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> MAL over state-of-the-art methods, especially in scenarios with significant domain shifts. Our code is available at https://github.com/yxk-art/C2MAL .</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03287-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03287-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无源域自适应(SFDA)在医学图像分析中已经变得至关重要,它可以在不标记目标域图像的情况下跨不同数据集适应源模型。自训练是一种流行的SFDA方法,它使用未标记的目标域数据迭代地改进自生成的伪标签,以适应源域的预训练模型。然而,由于伪标签积累不正确和前景-背景类不平衡,它经常面临模型不稳定的问题。本文提出了一个开创性的SFDA框架,称为级联网络引导类平衡多原型辅助学习(c2mal),以提高模型的稳定性。首先,我们介绍了级联翻译-切分网络(CTS-Net),该网络利用翻译和切分网络之间的迭代学习来生成准确的伪标签。CTS-Net采用翻译网络从初始目标域图像的不可靠预测合成目标类图像。合成的结果改进了分割网络训练,确保了语义对齐和最小化视觉差异。随后,可靠的伪标签引导类平衡多原型辅助学习网络(CMAL-Net)进行有效的模型自适应。CMAL-Net采用了一种新的多原型辅助学习策略和记忆网络来补充源域数据。我们提出了类平衡校准损失和多原型引导对称交叉熵损失来解决类不平衡问题,增强模型对目标域的适应性。在四个基准眼底图像数据集上进行的大量实验验证了c2mal优于最先进的方法,特别是在具有显著域偏移的场景下。我们的代码可在https://github.com/yxk-art/C2MAL上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C 2 MAL: cascaded network-guided class-balanced multi-prototype auxiliary learning for source-free domain adaptive medical image segmentation.

Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance. This paper presents a pioneering SFDA framework, named cascaded network-guided class-balanced multi-prototype auxiliary learning (C 2 MAL), to enhance model stability. Firstly, we introduce the cascaded translation-segmentation network (CTS-Net), which employs iterative learning between translation and segmentation networks to generate accurate pseudo-labels. The CTS-Net employs a translation network to synthesize target-like images from unreliable predictions of the initial target domain images. The synthesized results refine segmentation network training, ensuring semantic alignment and minimizing visual disparities. Subsequently, reliable pseudo-labels guide the class-balanced multi-prototype auxiliary learning network (CMAL-Net) for effective model adaptation. CMAL-Net incorporates a new multi-prototype auxiliary learning strategy with a memory network to complement source domain data. We propose a class-balanced calibration loss and multi-prototype-guided symmetry cross-entropy loss to tackle class imbalance issue and enhance model adaptability to the target domain. Extensive experiments on four benchmark fundus image datasets validate the superiority of C 2 MAL over state-of-the-art methods, especially in scenarios with significant domain shifts. Our code is available at https://github.com/yxk-art/C2MAL .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信