Elaheh Zarean, Shuai Li, Ee Ming Wong, Enes Makalic, Roger L Milne, Graham G Giles, Catriona McLean, Melissa C Southey, Pierre-Antoine Dugué
{"title":"肿瘤DNA甲基化标记与乳腺癌生存相关:一项重复研究","authors":"Elaheh Zarean, Shuai Li, Ee Ming Wong, Enes Makalic, Roger L Milne, Graham G Giles, Catriona McLean, Melissa C Southey, Pierre-Antoine Dugué","doi":"10.1186/s13058-024-01955-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.</p><p><strong>Methods: </strong>This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity). Cox proportional hazard regression analyses were conducted to assess associations between these markers and both breast cancer-specific survival and overall survival, adjusting for relevant participant characteristics.</p><p><strong>Results: </strong>Our findings revealed partial replication for both individual CpG sites (9 out of 22) and multi-CpG signatures (2 out of 3). These associations were maintained after adjustment for participant characteristics and were stronger for breast cancer-specific mortality than for overall mortality. In fully-adjusted models, strong associations were observed for a CpG in PRAC2 (per standard deviation [SD], HR = 1.67, 95%CI: 1.24-2.25) and a signature based on 28 CpGs developed using elastic net (per SD, HR = 1.48, 95%CI: 1.09-2.00).</p><p><strong>Conclusions: </strong>While further studies are needed to confirm and expand on these findings, our study suggests that DNA methylation markers hold promise for improving breast cancer prognostication.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"9"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumour DNA methylation markers associated with breast cancer survival: a replication study.\",\"authors\":\"Elaheh Zarean, Shuai Li, Ee Ming Wong, Enes Makalic, Roger L Milne, Graham G Giles, Catriona McLean, Melissa C Southey, Pierre-Antoine Dugué\",\"doi\":\"10.1186/s13058-024-01955-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.</p><p><strong>Methods: </strong>This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity). Cox proportional hazard regression analyses were conducted to assess associations between these markers and both breast cancer-specific survival and overall survival, adjusting for relevant participant characteristics.</p><p><strong>Results: </strong>Our findings revealed partial replication for both individual CpG sites (9 out of 22) and multi-CpG signatures (2 out of 3). These associations were maintained after adjustment for participant characteristics and were stronger for breast cancer-specific mortality than for overall mortality. In fully-adjusted models, strong associations were observed for a CpG in PRAC2 (per standard deviation [SD], HR = 1.67, 95%CI: 1.24-2.25) and a signature based on 28 CpGs developed using elastic net (per SD, HR = 1.48, 95%CI: 1.09-2.00).</p><p><strong>Conclusions: </strong>While further studies are needed to confirm and expand on these findings, our study suggests that DNA methylation markers hold promise for improving breast cancer prognostication.</p>\",\"PeriodicalId\":49227,\"journal\":{\"name\":\"Breast Cancer Research\",\"volume\":\"27 1\",\"pages\":\"9\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-024-01955-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-024-01955-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Tumour DNA methylation markers associated with breast cancer survival: a replication study.
Background: Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.
Methods: This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity). Cox proportional hazard regression analyses were conducted to assess associations between these markers and both breast cancer-specific survival and overall survival, adjusting for relevant participant characteristics.
Results: Our findings revealed partial replication for both individual CpG sites (9 out of 22) and multi-CpG signatures (2 out of 3). These associations were maintained after adjustment for participant characteristics and were stronger for breast cancer-specific mortality than for overall mortality. In fully-adjusted models, strong associations were observed for a CpG in PRAC2 (per standard deviation [SD], HR = 1.67, 95%CI: 1.24-2.25) and a signature based on 28 CpGs developed using elastic net (per SD, HR = 1.48, 95%CI: 1.09-2.00).
Conclusions: While further studies are needed to confirm and expand on these findings, our study suggests that DNA methylation markers hold promise for improving breast cancer prognostication.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.