{"title":"MultiChem:使用多视图图注意网络预测化学性质。","authors":"Heesang Moon, Mina Rho","doi":"10.1186/s13040-024-00419-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures. Leveraging this progress, we developed a novel multi-view learning model.</p><p><strong>Results: </strong>We introduce a graph-integrated model that captures both local and global structural features of chemical compounds. In our model, graph attention layers are employed to effectively capture essential local structures by jointly considering atom and bond features, while multi-head attention layers extract important global features. We evaluated our model on nine MoleculeNet datasets, encompassing both classification and regression tasks, and compared its performance with state-of-the-art methods. Our model achieved an average area under the receiver operating characteristic (AUROC) of 0.822 and a root mean squared error (RMSE) of 1.133, representing a 3% improvement in AUROC and a 7% improvement in RMSE over state-of-the-art models in extensive seed testing.</p><p><strong>Conclusion: </strong>MultiChem highlights the importance of integrating both local and global structural information in predicting molecular properties, while also assessing the stability of the models across multiple datasets using various random seed values.</p><p><strong>Implementation: </strong>The codes are available at https://github.com/DMnBI/MultiChem .</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"4"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737097/pdf/","citationCount":"0","resultStr":"{\"title\":\"MultiChem: predicting chemical properties using multi-view graph attention network.\",\"authors\":\"Heesang Moon, Mina Rho\",\"doi\":\"10.1186/s13040-024-00419-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures. Leveraging this progress, we developed a novel multi-view learning model.</p><p><strong>Results: </strong>We introduce a graph-integrated model that captures both local and global structural features of chemical compounds. In our model, graph attention layers are employed to effectively capture essential local structures by jointly considering atom and bond features, while multi-head attention layers extract important global features. We evaluated our model on nine MoleculeNet datasets, encompassing both classification and regression tasks, and compared its performance with state-of-the-art methods. Our model achieved an average area under the receiver operating characteristic (AUROC) of 0.822 and a root mean squared error (RMSE) of 1.133, representing a 3% improvement in AUROC and a 7% improvement in RMSE over state-of-the-art models in extensive seed testing.</p><p><strong>Conclusion: </strong>MultiChem highlights the importance of integrating both local and global structural information in predicting molecular properties, while also assessing the stability of the models across multiple datasets using various random seed values.</p><p><strong>Implementation: </strong>The codes are available at https://github.com/DMnBI/MultiChem .</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"4\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00419-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00419-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
MultiChem: predicting chemical properties using multi-view graph attention network.
Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures. Leveraging this progress, we developed a novel multi-view learning model.
Results: We introduce a graph-integrated model that captures both local and global structural features of chemical compounds. In our model, graph attention layers are employed to effectively capture essential local structures by jointly considering atom and bond features, while multi-head attention layers extract important global features. We evaluated our model on nine MoleculeNet datasets, encompassing both classification and regression tasks, and compared its performance with state-of-the-art methods. Our model achieved an average area under the receiver operating characteristic (AUROC) of 0.822 and a root mean squared error (RMSE) of 1.133, representing a 3% improvement in AUROC and a 7% improvement in RMSE over state-of-the-art models in extensive seed testing.
Conclusion: MultiChem highlights the importance of integrating both local and global structural information in predicting molecular properties, while also assessing the stability of the models across multiple datasets using various random seed values.
Implementation: The codes are available at https://github.com/DMnBI/MultiChem .
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.