基于集成机器学习的性能评估确定了对癌症驱动突变进行最佳分类的顶级计算机致病性预测方法。

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Subrata Das, Vatsal Patel, Shouvik Chakravarty, Arnab Ghosh, Anirban Mukhopadhyay, Nidhan K Biswas
{"title":"基于集成机器学习的性能评估确定了对癌症驱动突变进行最佳分类的顶级计算机致病性预测方法。","authors":"Subrata Das, Vatsal Patel, Shouvik Chakravarty, Arnab Ghosh, Anirban Mukhopadhyay, Nidhan K Biswas","doi":"10.1186/s13040-024-00420-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations. This study aims to develop an ensemble machine learning approach to evaluate the performance (rank) of pathogenic and conservation scoring algorithms (PCSAs) based on their ability to distinguish pathogenic driver mutations from benign passenger (non-driver) mutations in head and neck squamous cell carcinoma (HNSC).</p><p><strong>Methods: </strong>The study used a dataset from 502 HNSC patients, classifying mutations based on 299 known high-confidence cancer driver genes. Missense somatic mutations in driver genes were treated as driver mutations, while non-driver mutations were randomly selected from other genes. Each mutation was annotated with 41 PCSAs. Three machine learning algorithms-logistic regression, random forest, and support vector machine-along with recursive feature elimination, were used to rank these PCSAs. The final ranking of the PCSAs was determined using rank-average-sort and rank-sum-sort methods.</p><p><strong>Results: </strong>The random forest algorithm emerged as the top performer among the three tested ML algorithms, with an AUC-ROC of 0.89, compared to 0.83 for the other two, in distinguishing pathogenic driver mutations from benign passenger mutations using all 41 PCSAs. The top 11 PCSAs were selected based on the first quintile cut-off from the final rank-sum distribution. Classifiers built using these top 11 PCSAs (DEOGEN2, Integrated_fitCons, MVP, etc.) demonstrated significantly higher performance (p-value < 2.22e-16) compared to those using the remaining 30 PCSAs across all three ML algorithms, in separating pathogenic driver from benign passenger mutations. The top PCSAs demonstrated strong performance on a validation cohort including independent HNSC and other cancer types: breast, lung, and colorectal - reflecting its consistency, robustness and generalizability.</p><p><strong>Conclusions: </strong>The ensemble machine learning approach effectively evaluates the performance of PCSAs based on their ability to differentiate pathogenic drivers from benign passenger mutations in HNSC and other cancer types. Notably, some well-known PCSAs performed poorly, underscoring the importance of data-driven selection over relying solely on popularity.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"7"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer.\",\"authors\":\"Subrata Das, Vatsal Patel, Shouvik Chakravarty, Arnab Ghosh, Anirban Mukhopadhyay, Nidhan K Biswas\",\"doi\":\"10.1186/s13040-024-00420-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations. This study aims to develop an ensemble machine learning approach to evaluate the performance (rank) of pathogenic and conservation scoring algorithms (PCSAs) based on their ability to distinguish pathogenic driver mutations from benign passenger (non-driver) mutations in head and neck squamous cell carcinoma (HNSC).</p><p><strong>Methods: </strong>The study used a dataset from 502 HNSC patients, classifying mutations based on 299 known high-confidence cancer driver genes. Missense somatic mutations in driver genes were treated as driver mutations, while non-driver mutations were randomly selected from other genes. Each mutation was annotated with 41 PCSAs. Three machine learning algorithms-logistic regression, random forest, and support vector machine-along with recursive feature elimination, were used to rank these PCSAs. The final ranking of the PCSAs was determined using rank-average-sort and rank-sum-sort methods.</p><p><strong>Results: </strong>The random forest algorithm emerged as the top performer among the three tested ML algorithms, with an AUC-ROC of 0.89, compared to 0.83 for the other two, in distinguishing pathogenic driver mutations from benign passenger mutations using all 41 PCSAs. The top 11 PCSAs were selected based on the first quintile cut-off from the final rank-sum distribution. Classifiers built using these top 11 PCSAs (DEOGEN2, Integrated_fitCons, MVP, etc.) demonstrated significantly higher performance (p-value < 2.22e-16) compared to those using the remaining 30 PCSAs across all three ML algorithms, in separating pathogenic driver from benign passenger mutations. The top PCSAs demonstrated strong performance on a validation cohort including independent HNSC and other cancer types: breast, lung, and colorectal - reflecting its consistency, robustness and generalizability.</p><p><strong>Conclusions: </strong>The ensemble machine learning approach effectively evaluates the performance of PCSAs based on their ability to differentiate pathogenic drivers from benign passenger mutations in HNSC and other cancer types. Notably, some well-known PCSAs performed poorly, underscoring the importance of data-driven selection over relying solely on popularity.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"7\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00420-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00420-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:癌症驱动突变的准确识别和优先排序对于有效的患者管理至关重要。尽管存在许多用于估计突变致病性的生物信息学算法,但它们的评估存在显着差异。这种不一致甚至在已经确定的癌症驱动突变中也很明显。本研究旨在开发一种集成机器学习方法,基于区分头颈部鳞状细胞癌(HNSC)中致病驱动突变和良性乘客(非驱动)突变的能力,评估致病性和保守性评分算法(pcsa)的性能(排名)。方法:该研究使用了来自502例HNSC患者的数据集,基于299个已知的高可信度癌症驱动基因对突变进行了分类。驱动基因中的错义体细胞突变被视为驱动突变,而非驱动突变则从其他基因中随机选择。每个突变用41个pcsa注释。三种机器学习算法——逻辑回归、随机森林和支持向量机——以及递归特征消除,被用来对这些pcsa进行排序。采用秩-平均排序和秩-和排序方法确定pcsa的最终排序。结果:在使用所有41种pcsa区分致病驱动突变和良性乘客突变方面,随机森林算法在三种测试的ML算法中表现最佳,AUC-ROC为0.89,而其他两种算法的AUC-ROC为0.83。排名前11位的pcsa是根据最终秩和分布的第一个五分位数选出的。使用这11种排名靠前的pcsa (DEOGEN2、Integrated_fitCons、MVP等)构建的分类器表现出了显著更高的性能(p值)。结论:集成机器学习方法基于pcsa区分HNSC和其他癌症类型的致病驱动因子与良性乘客突变的能力,有效地评估了pcsa的性能。值得注意的是,一些知名的pcsa表现不佳,强调了数据驱动选择的重要性,而不是仅仅依靠人气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer.

Background and objective: Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations. This study aims to develop an ensemble machine learning approach to evaluate the performance (rank) of pathogenic and conservation scoring algorithms (PCSAs) based on their ability to distinguish pathogenic driver mutations from benign passenger (non-driver) mutations in head and neck squamous cell carcinoma (HNSC).

Methods: The study used a dataset from 502 HNSC patients, classifying mutations based on 299 known high-confidence cancer driver genes. Missense somatic mutations in driver genes were treated as driver mutations, while non-driver mutations were randomly selected from other genes. Each mutation was annotated with 41 PCSAs. Three machine learning algorithms-logistic regression, random forest, and support vector machine-along with recursive feature elimination, were used to rank these PCSAs. The final ranking of the PCSAs was determined using rank-average-sort and rank-sum-sort methods.

Results: The random forest algorithm emerged as the top performer among the three tested ML algorithms, with an AUC-ROC of 0.89, compared to 0.83 for the other two, in distinguishing pathogenic driver mutations from benign passenger mutations using all 41 PCSAs. The top 11 PCSAs were selected based on the first quintile cut-off from the final rank-sum distribution. Classifiers built using these top 11 PCSAs (DEOGEN2, Integrated_fitCons, MVP, etc.) demonstrated significantly higher performance (p-value < 2.22e-16) compared to those using the remaining 30 PCSAs across all three ML algorithms, in separating pathogenic driver from benign passenger mutations. The top PCSAs demonstrated strong performance on a validation cohort including independent HNSC and other cancer types: breast, lung, and colorectal - reflecting its consistency, robustness and generalizability.

Conclusions: The ensemble machine learning approach effectively evaluates the performance of PCSAs based on their ability to differentiate pathogenic drivers from benign passenger mutations in HNSC and other cancer types. Notably, some well-known PCSAs performed poorly, underscoring the importance of data-driven selection over relying solely on popularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信