{"title":"蛋白质纳米颗粒作为多胞嘧啶rna结合蛋白1的有效递送载体。","authors":"Zi-Yu Zhao, Pei-Li Luo, Xia Guo, Zheng-Wei Huang","doi":"10.4239/wjd.v16.i1.100675","DOIUrl":null,"url":null,"abstract":"<p><p>Ma <i>et al</i> recently reported in the <i>World Journal of Diabetes</i> that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma <i>et al</i> used a lentivirus infection system to express PCBP1. As the authors' method of administration can be improved in terms of stability and cost, we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles. First, PCBP1 is small and druggable. Second, intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation. Furthermore, incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1's structure and activity. Notably, the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 1","pages":"100675"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718452/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one.\",\"authors\":\"Zi-Yu Zhao, Pei-Li Luo, Xia Guo, Zheng-Wei Huang\",\"doi\":\"10.4239/wjd.v16.i1.100675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ma <i>et al</i> recently reported in the <i>World Journal of Diabetes</i> that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma <i>et al</i> used a lentivirus infection system to express PCBP1. As the authors' method of administration can be improved in terms of stability and cost, we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles. First, PCBP1 is small and druggable. Second, intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation. Furthermore, incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1's structure and activity. Notably, the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.</p>\",\"PeriodicalId\":48607,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"16 1\",\"pages\":\"100675\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718452/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v16.i1.100675\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i1.100675","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one.
Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma et al used a lentivirus infection system to express PCBP1. As the authors' method of administration can be improved in terms of stability and cost, we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles. First, PCBP1 is small and druggable. Second, intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation. Furthermore, incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1's structure and activity. Notably, the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.