钙零:一个工具箱的荧光钙成像的iPSC衍生的脑类器官。

Q1 Computer Science
Xiaofu He, Yian Wang, Yutong Gao, Xuchen Wang, Zhixiong Sun, Huixiang Zhu, Kam W Leong, Bin Xu
{"title":"钙零:一个工具箱的荧光钙成像的iPSC衍生的脑类器官。","authors":"Xiaofu He, Yian Wang, Yutong Gao, Xuchen Wang, Zhixiong Sun, Huixiang Zhu, Kam W Leong, Bin Xu","doi":"10.1186/s40708-024-00248-5","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns. However, a significant breakthrough in the field has emerged with the advent of utilizing patient-derived human induced pluripotent stem cells (iPSCs) to culture neurons and develop brain organoids. This innovative approach provides a promising modeling system to overcome these critical obstacles. Many robust calcium imaging analysis tools have been developed for calcium activity analysis. However, most of the tools are designed for calcium signal detection only. There are limited choices for in-depth downstream applications, particularly in discerning differences between patient and normal calcium dynamics and their responses to drug treatment obtained from human iPSC-based models. Moreover, end-user researchers usually face a considerable challenge in mastering the entire analysis procedure and obtaining critical outputs due to the steep learning curve associated with these available tools. Therefore, we developed CalciumZero, a user-friendly toolbox to satisfy the unmet needs in calcium activity studies in human iPSC-based 3D-organoid/neurosphere models. CalciumZero includes a graphical user interface (GUI), which provides end-user iconic visualization and smooth adjustments on parameter tuning. It streamlines the entire analysis process, offering full automation with just one click after parameter optimization. In addition, it includes supplementary features to statistically evaluate the impact on disease etiology and the detection of drug candidate effects on calcium activities. These evaluations will enhance the analysis of imaging data obtained from patient iPSC-derived brain organoid/neurosphere models, providing a more comprehensive understanding of the results.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746984/pdf/","citationCount":"0","resultStr":"{\"title\":\"CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids.\",\"authors\":\"Xiaofu He, Yian Wang, Yutong Gao, Xuchen Wang, Zhixiong Sun, Huixiang Zhu, Kam W Leong, Bin Xu\",\"doi\":\"10.1186/s40708-024-00248-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns. However, a significant breakthrough in the field has emerged with the advent of utilizing patient-derived human induced pluripotent stem cells (iPSCs) to culture neurons and develop brain organoids. This innovative approach provides a promising modeling system to overcome these critical obstacles. Many robust calcium imaging analysis tools have been developed for calcium activity analysis. However, most of the tools are designed for calcium signal detection only. There are limited choices for in-depth downstream applications, particularly in discerning differences between patient and normal calcium dynamics and their responses to drug treatment obtained from human iPSC-based models. Moreover, end-user researchers usually face a considerable challenge in mastering the entire analysis procedure and obtaining critical outputs due to the steep learning curve associated with these available tools. Therefore, we developed CalciumZero, a user-friendly toolbox to satisfy the unmet needs in calcium activity studies in human iPSC-based 3D-organoid/neurosphere models. CalciumZero includes a graphical user interface (GUI), which provides end-user iconic visualization and smooth adjustments on parameter tuning. It streamlines the entire analysis process, offering full automation with just one click after parameter optimization. In addition, it includes supplementary features to statistically evaluate the impact on disease etiology and the detection of drug candidate effects on calcium activities. These evaluations will enhance the analysis of imaging data obtained from patient iPSC-derived brain organoid/neurosphere models, providing a more comprehensive understanding of the results.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00248-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00248-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

钙在调节人脑各种神经元活动中起着重要作用。研究神经元钙水平的动态变化不仅对理解神经精神疾病的病理生理学至关重要,而且也是评估药物对神经元活动影响的定量指标。由于伦理方面的考虑,利用人脑组织来研究神经元活动历来具有挑战性。然而,随着利用患者来源的人类诱导多能干细胞(iPSCs)培养神经元和发育脑类器官的出现,该领域出现了重大突破。这种创新的方法为克服这些关键障碍提供了一个有前途的建模系统。许多强大的钙成像分析工具已经开发用于钙活性分析。然而,大多数工具仅用于钙信号检测。深入下游应用的选择有限,特别是在区分患者和正常钙动力学之间的差异以及他们对基于人类ipsc的模型的药物治疗的反应方面。此外,由于与这些可用工具相关的陡峭学习曲线,最终用户研究人员通常在掌握整个分析过程和获得关键输出方面面临相当大的挑战。因此,我们开发了CalciumZero,这是一个用户友好的工具箱,以满足基于人类ipsc的3d类器官/神经球模型中钙活性研究的未满足需求。CalciumZero包括一个图形用户界面(GUI),它为最终用户提供了图标可视化和参数调优的平滑调整。它简化了整个分析过程,在参数优化后只需单击一下即可提供完全自动化。此外,它还包括补充功能,以统计评估对疾病病因的影响和检测候选药物对钙活性的影响。这些评估将加强从患者ipsc衍生的脑类器官/神经球模型获得的成像数据的分析,提供对结果的更全面的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids.

Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns. However, a significant breakthrough in the field has emerged with the advent of utilizing patient-derived human induced pluripotent stem cells (iPSCs) to culture neurons and develop brain organoids. This innovative approach provides a promising modeling system to overcome these critical obstacles. Many robust calcium imaging analysis tools have been developed for calcium activity analysis. However, most of the tools are designed for calcium signal detection only. There are limited choices for in-depth downstream applications, particularly in discerning differences between patient and normal calcium dynamics and their responses to drug treatment obtained from human iPSC-based models. Moreover, end-user researchers usually face a considerable challenge in mastering the entire analysis procedure and obtaining critical outputs due to the steep learning curve associated with these available tools. Therefore, we developed CalciumZero, a user-friendly toolbox to satisfy the unmet needs in calcium activity studies in human iPSC-based 3D-organoid/neurosphere models. CalciumZero includes a graphical user interface (GUI), which provides end-user iconic visualization and smooth adjustments on parameter tuning. It streamlines the entire analysis process, offering full automation with just one click after parameter optimization. In addition, it includes supplementary features to statistically evaluate the impact on disease etiology and the detection of drug candidate effects on calcium activities. These evaluations will enhance the analysis of imaging data obtained from patient iPSC-derived brain organoid/neurosphere models, providing a more comprehensive understanding of the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信