Abigail E Robinson, Isabel Novick, Jessica Herrmann, Lily DeFelice, Aidan Engel, Dina Famin, Colleen Fetherston, Bianca Frintu, Julia Meyersiek, Musfika Mishi, Tran Gia Ha Nguyễn, Peter M Buston, Thomas N Sherratt, Sean P Mullen
{"title":"时间同步性对于有效的贝叶斯模仿是必要的吗?","authors":"Abigail E Robinson, Isabel Novick, Jessica Herrmann, Lily DeFelice, Aidan Engel, Dina Famin, Colleen Fetherston, Bianca Frintu, Julia Meyersiek, Musfika Mishi, Tran Gia Ha Nguyễn, Peter M Buston, Thomas N Sherratt, Sean P Mullen","doi":"10.1098/rspb.2024.1737","DOIUrl":null,"url":null,"abstract":"<p><p>Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model species <i>Battus philenor</i> and its imperfect Batesian mimic <i>Limenitis arthemis astyanax</i> under four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model's absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2039","pages":"20241737"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750401/pdf/","citationCount":"0","resultStr":"{\"title\":\"Is temporal synchrony necessary for effective Batesian mimicry?\",\"authors\":\"Abigail E Robinson, Isabel Novick, Jessica Herrmann, Lily DeFelice, Aidan Engel, Dina Famin, Colleen Fetherston, Bianca Frintu, Julia Meyersiek, Musfika Mishi, Tran Gia Ha Nguyễn, Peter M Buston, Thomas N Sherratt, Sean P Mullen\",\"doi\":\"10.1098/rspb.2024.1737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model species <i>Battus philenor</i> and its imperfect Batesian mimic <i>Limenitis arthemis astyanax</i> under four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model's absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"292 2039\",\"pages\":\"20241737\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.1737\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1737","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Is temporal synchrony necessary for effective Batesian mimicry?
Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model species Battus philenor and its imperfect Batesian mimic Limenitis arthemis astyanax under four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model's absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.