Simone Anzà, Michael Heistermann, Julia Ostner, Oliver Schülke
{"title":"在野生灵长类动物中,产前早期而非产后糖皮质激素暴露与成年后HPA轴活性增强有关。","authors":"Simone Anzà, Michael Heistermann, Julia Ostner, Oliver Schülke","doi":"10.1098/rspb.2024.2418","DOIUrl":null,"url":null,"abstract":"<p><p>The hypothalamic-pituitary-adrenal (HPA) axis plays a dual role in the biology of developmental plasticity in mammals, including humans-HPA axis activity not only provides the input for, but is also a target of, offspring developmental plasticity. To investigate the understudied effects of exposure timing, this study quantified maternal HPA axis activity during each half of gestation as well as during early lactation and assessed its effect on offspring HPA axis activity in a cross-sectional sample of infant, juvenile and adult Assamese macaques (<i>Macaca assamensis</i>). To add ecological validity to experimental studies under laboratory conditions, macaques were studied in the wild. Increased maternal faecal glucocorticoid (GC) metabolite levels experienced early in gestation, but not postnatal exposure during lactation were associated with increased offspring HPA axis activity from infancy into adulthood. Building on prior findings, this study indicates that significant timing effects not only influence the presence, magnitude and direction, but also the consistency of maternal GC effects on offspring HPA axis function.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2039","pages":"20242418"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early prenatal but not postnatal glucocorticoid exposure is associated with enhanced HPA axis activity into adulthood in a wild primate.\",\"authors\":\"Simone Anzà, Michael Heistermann, Julia Ostner, Oliver Schülke\",\"doi\":\"10.1098/rspb.2024.2418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hypothalamic-pituitary-adrenal (HPA) axis plays a dual role in the biology of developmental plasticity in mammals, including humans-HPA axis activity not only provides the input for, but is also a target of, offspring developmental plasticity. To investigate the understudied effects of exposure timing, this study quantified maternal HPA axis activity during each half of gestation as well as during early lactation and assessed its effect on offspring HPA axis activity in a cross-sectional sample of infant, juvenile and adult Assamese macaques (<i>Macaca assamensis</i>). To add ecological validity to experimental studies under laboratory conditions, macaques were studied in the wild. Increased maternal faecal glucocorticoid (GC) metabolite levels experienced early in gestation, but not postnatal exposure during lactation were associated with increased offspring HPA axis activity from infancy into adulthood. Building on prior findings, this study indicates that significant timing effects not only influence the presence, magnitude and direction, but also the consistency of maternal GC effects on offspring HPA axis function.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"292 2039\",\"pages\":\"20242418\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.2418\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2418","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Early prenatal but not postnatal glucocorticoid exposure is associated with enhanced HPA axis activity into adulthood in a wild primate.
The hypothalamic-pituitary-adrenal (HPA) axis plays a dual role in the biology of developmental plasticity in mammals, including humans-HPA axis activity not only provides the input for, but is also a target of, offspring developmental plasticity. To investigate the understudied effects of exposure timing, this study quantified maternal HPA axis activity during each half of gestation as well as during early lactation and assessed its effect on offspring HPA axis activity in a cross-sectional sample of infant, juvenile and adult Assamese macaques (Macaca assamensis). To add ecological validity to experimental studies under laboratory conditions, macaques were studied in the wild. Increased maternal faecal glucocorticoid (GC) metabolite levels experienced early in gestation, but not postnatal exposure during lactation were associated with increased offspring HPA axis activity from infancy into adulthood. Building on prior findings, this study indicates that significant timing effects not only influence the presence, magnitude and direction, but also the consistency of maternal GC effects on offspring HPA axis function.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.