Hatem Ali, Arun Shroff, Tibor Fülöp, Miklos Z Molnar, Adnan Sharif, Bernard Burke, Sunil Shroff, David Briggs, Nithya Krishnan
{"title":"人工智能辅助器官移植风险预测:英国活体肾移植结果预测工具。","authors":"Hatem Ali, Arun Shroff, Tibor Fülöp, Miklos Z Molnar, Adnan Sharif, Bernard Burke, Sunil Shroff, David Briggs, Nithya Krishnan","doi":"10.1080/0886022X.2024.2431147","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to apply artificial intelligence (AI) algorithms to create a highly predictive risk stratification indicator, applicable to the UK's transplant selection process.</p><p><p><b>Methodology:</b> Pre-transplant characteristics from 12,661 live-donor kidney transplants (performed between 2007 and 2022) from the United Kingdom Transplant Registry database were analyzed. The transplants were randomly divided into training (70%) and validation (30%) sets. Death-censored graft survival was the primary performance indicator. We experimented with four machine learning (ML) models assessed for calibration and discrimination [integrated Brier score (IBS) and Harrell's concordance index]. We assessed the potential clinical utility using decision curve analysis.</p><p><p><b>Results:</b> XGBoost demonstrated the best discriminative performance for survival (area under the curve = 0.73, 0.74, and 0.75 at 3, 7, and 10 years post-transplant, respectively). The concordance index was 0.72. The calibration process was adequate, as evidenced by the IBS score of 0.09.</p><p><p><b>Conclusion:</b> By evaluating possible donor-recipient pairs based on graft survival, the AI-based UK Live-Donor Kidney Transplant Outcome Prediction has the potential to enhance choices for the best live-donor selection. This methodology may improve the outcomes of kidney paired exchange schemes. In general terms we show how the new AI and ML tools can have a role in developing effective and equitable healthcare.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":"47 1","pages":"2431147"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence assisted risk prediction in organ transplantation: a UK Live-Donor Kidney Transplant Outcome Prediction tool.\",\"authors\":\"Hatem Ali, Arun Shroff, Tibor Fülöp, Miklos Z Molnar, Adnan Sharif, Bernard Burke, Sunil Shroff, David Briggs, Nithya Krishnan\",\"doi\":\"10.1080/0886022X.2024.2431147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to apply artificial intelligence (AI) algorithms to create a highly predictive risk stratification indicator, applicable to the UK's transplant selection process.</p><p><p><b>Methodology:</b> Pre-transplant characteristics from 12,661 live-donor kidney transplants (performed between 2007 and 2022) from the United Kingdom Transplant Registry database were analyzed. The transplants were randomly divided into training (70%) and validation (30%) sets. Death-censored graft survival was the primary performance indicator. We experimented with four machine learning (ML) models assessed for calibration and discrimination [integrated Brier score (IBS) and Harrell's concordance index]. We assessed the potential clinical utility using decision curve analysis.</p><p><p><b>Results:</b> XGBoost demonstrated the best discriminative performance for survival (area under the curve = 0.73, 0.74, and 0.75 at 3, 7, and 10 years post-transplant, respectively). The concordance index was 0.72. The calibration process was adequate, as evidenced by the IBS score of 0.09.</p><p><p><b>Conclusion:</b> By evaluating possible donor-recipient pairs based on graft survival, the AI-based UK Live-Donor Kidney Transplant Outcome Prediction has the potential to enhance choices for the best live-donor selection. This methodology may improve the outcomes of kidney paired exchange schemes. In general terms we show how the new AI and ML tools can have a role in developing effective and equitable healthcare.</p>\",\"PeriodicalId\":20839,\"journal\":{\"name\":\"Renal Failure\",\"volume\":\"47 1\",\"pages\":\"2431147\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renal Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/0886022X.2024.2431147\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2024.2431147","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Artificial intelligence assisted risk prediction in organ transplantation: a UK Live-Donor Kidney Transplant Outcome Prediction tool.
Introduction: Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to apply artificial intelligence (AI) algorithms to create a highly predictive risk stratification indicator, applicable to the UK's transplant selection process.
Methodology: Pre-transplant characteristics from 12,661 live-donor kidney transplants (performed between 2007 and 2022) from the United Kingdom Transplant Registry database were analyzed. The transplants were randomly divided into training (70%) and validation (30%) sets. Death-censored graft survival was the primary performance indicator. We experimented with four machine learning (ML) models assessed for calibration and discrimination [integrated Brier score (IBS) and Harrell's concordance index]. We assessed the potential clinical utility using decision curve analysis.
Results: XGBoost demonstrated the best discriminative performance for survival (area under the curve = 0.73, 0.74, and 0.75 at 3, 7, and 10 years post-transplant, respectively). The concordance index was 0.72. The calibration process was adequate, as evidenced by the IBS score of 0.09.
Conclusion: By evaluating possible donor-recipient pairs based on graft survival, the AI-based UK Live-Donor Kidney Transplant Outcome Prediction has the potential to enhance choices for the best live-donor selection. This methodology may improve the outcomes of kidney paired exchange schemes. In general terms we show how the new AI and ML tools can have a role in developing effective and equitable healthcare.
期刊介绍:
Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.