T George Hornby, Jennifer Moore, Carey L Holleran, Christopher E Henderson
{"title":"在神经系统康复中迈出下一步:运动训练中步进任务的强度和变异性的贡献。","authors":"T George Hornby, Jennifer Moore, Carey L Holleran, Christopher E Henderson","doi":"10.1093/ptj/pzaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention towards 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice. The purpose of this perspective is to delineate the evidence regarding the contributions of intensity and variability of locomotor training to improve mobility outcomes in individuals with acute-onset brain and spinal cord injury. The rationale and evidence supporting the utility of these training parameters in controlled laboratory settings is first described by integrating concepts in the field of neuroscience, motor learning, biomechanics, and exercise physiology into a rehabilitation intervention. Subsequently, the evidence supporting the efficacy of this paradigm is addressed, including discussions of some of the misconceptions regarding perceived negative consequences of these strategies in an effort to mitigate common clinical concerns. Finally, the utility of these strategies implemented during inpatient rehabilitation is delineated to facilitate a more comprehensive understanding of the feasibility and potential benefits early following neurologic injury. A greater understanding of how and why to integrate higher intensity, variable stepping practice will support therapists to take the next step to maximize mobility in the patients they serve.</p>","PeriodicalId":20093,"journal":{"name":"Physical Therapy","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taking the Next Step in Neurologic Rehabilitation: Contributions of Intensity and Variability of Stepping Tasks during Locomotor Training.\",\"authors\":\"T George Hornby, Jennifer Moore, Carey L Holleran, Christopher E Henderson\",\"doi\":\"10.1093/ptj/pzaf005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention towards 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice. The purpose of this perspective is to delineate the evidence regarding the contributions of intensity and variability of locomotor training to improve mobility outcomes in individuals with acute-onset brain and spinal cord injury. The rationale and evidence supporting the utility of these training parameters in controlled laboratory settings is first described by integrating concepts in the field of neuroscience, motor learning, biomechanics, and exercise physiology into a rehabilitation intervention. Subsequently, the evidence supporting the efficacy of this paradigm is addressed, including discussions of some of the misconceptions regarding perceived negative consequences of these strategies in an effort to mitigate common clinical concerns. Finally, the utility of these strategies implemented during inpatient rehabilitation is delineated to facilitate a more comprehensive understanding of the feasibility and potential benefits early following neurologic injury. A greater understanding of how and why to integrate higher intensity, variable stepping practice will support therapists to take the next step to maximize mobility in the patients they serve.</p>\",\"PeriodicalId\":20093,\"journal\":{\"name\":\"Physical Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ptj/pzaf005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ptj/pzaf005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Taking the Next Step in Neurologic Rehabilitation: Contributions of Intensity and Variability of Stepping Tasks during Locomotor Training.
Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention towards 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice. The purpose of this perspective is to delineate the evidence regarding the contributions of intensity and variability of locomotor training to improve mobility outcomes in individuals with acute-onset brain and spinal cord injury. The rationale and evidence supporting the utility of these training parameters in controlled laboratory settings is first described by integrating concepts in the field of neuroscience, motor learning, biomechanics, and exercise physiology into a rehabilitation intervention. Subsequently, the evidence supporting the efficacy of this paradigm is addressed, including discussions of some of the misconceptions regarding perceived negative consequences of these strategies in an effort to mitigate common clinical concerns. Finally, the utility of these strategies implemented during inpatient rehabilitation is delineated to facilitate a more comprehensive understanding of the feasibility and potential benefits early following neurologic injury. A greater understanding of how and why to integrate higher intensity, variable stepping practice will support therapists to take the next step to maximize mobility in the patients they serve.
期刊介绍:
Physical Therapy (PTJ) engages and inspires an international readership on topics related to physical therapy. As the leading international journal for research in physical therapy and related fields, PTJ publishes innovative and highly relevant content for both clinicians and scientists and uses a variety of interactive approaches to communicate that content, with the expressed purpose of improving patient care. PTJ"s circulation in 2008 is more than 72,000. Its 2007 impact factor was 2.152. The mean time from submission to first decision is 58 days. Time from acceptance to publication online is less than or equal to 3 months and from acceptance to publication in print is less than or equal to 5 months.