利用特征解纠缠自编码器生成心电信号。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Hanbin Xiao, Yong Xia
{"title":"利用特征解纠缠自编码器生成心电信号。","authors":"Hanbin Xiao, Yong Xia","doi":"10.1088/1361-6579/adab4f","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The demand for electrocardiogram (ECG) datasets, particularly those containing rare classes, poses a significant challenge as deep learning becomes increasingly prevalent in ECG signal research. While generative adversarial networks (GANs) and variational autoencoders (VAEs) are widely adopted, they encounter difficulties in effectively generating samples for classes with limited instances.<i>Approach.</i>To address this issue, we propose a novel<u>F</u>eature<u>D</u>isentanglement Auto-Encoder (FDAE) designed to dissect various generative factors under a contrastive learning framework within ECG data to facilitate the generation of new ECG samples. The FDAE enhances and extends the AE structure with novel methodologies, which involve: (1) partitioning the latent space into three distinct representations to capture various generative factors; (2) utilizing a contrastive loss function to improve feature disentanglement capabilities; and (3) incorporating additional classifiers to enhance representation learning, alongside a discriminator aimed at boosting the realism of synthesized signals. Furthermore, our FDAE generates new signals by swapping latent codes of existing signals and combining freely or substituting patient-independent representations with those randomly generated by a VAE.<i>Main results.</i>To validate our approach, we conduct heartbeat classification experiments on the publicly available MIT-BIH arrhythmia database, using FAKE-train/FAKE-test partitions and data augmentation. The results highlight the FDAE's ability to improve ECG classifier performance and excel in synthesizing ECG signals. Furthermore, we apply the model to the Icentia11K dataset and conducted classification enhancement experiments. The results further highlight the model's strong generalization ability in ECG synthesis.<i>Significance.</i>This work has the potential to improve the robustness and generalization of deep learning models for ECG analysis, particularly in medical applications where rare cardiac events are often underrepresented in available datasets.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG signal generation using feature disentanglement auto-encoder.\",\"authors\":\"Hanbin Xiao, Yong Xia\",\"doi\":\"10.1088/1361-6579/adab4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>The demand for electrocardiogram (ECG) datasets, particularly those containing rare classes, poses a significant challenge as deep learning becomes increasingly prevalent in ECG signal research. While generative adversarial networks (GANs) and variational autoencoders (VAEs) are widely adopted, they encounter difficulties in effectively generating samples for classes with limited instances.<i>Approach.</i>To address this issue, we propose a novel<u>F</u>eature<u>D</u>isentanglement Auto-Encoder (FDAE) designed to dissect various generative factors under a contrastive learning framework within ECG data to facilitate the generation of new ECG samples. The FDAE enhances and extends the AE structure with novel methodologies, which involve: (1) partitioning the latent space into three distinct representations to capture various generative factors; (2) utilizing a contrastive loss function to improve feature disentanglement capabilities; and (3) incorporating additional classifiers to enhance representation learning, alongside a discriminator aimed at boosting the realism of synthesized signals. Furthermore, our FDAE generates new signals by swapping latent codes of existing signals and combining freely or substituting patient-independent representations with those randomly generated by a VAE.<i>Main results.</i>To validate our approach, we conduct heartbeat classification experiments on the publicly available MIT-BIH arrhythmia database, using FAKE-train/FAKE-test partitions and data augmentation. The results highlight the FDAE's ability to improve ECG classifier performance and excel in synthesizing ECG signals. Furthermore, we apply the model to the Icentia11K dataset and conducted classification enhancement experiments. The results further highlight the model's strong generalization ability in ECG synthesis.<i>Significance.</i>This work has the potential to improve the robustness and generalization of deep learning models for ECG analysis, particularly in medical applications where rare cardiac events are often underrepresented in available datasets.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/adab4f\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adab4f","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:随着深度学习在心电信号研究中的日益普及,对心电数据集的需求,特别是那些包含稀有类的数据集的需求提出了重大挑战。虽然生成对抗网络(GANs)和变分自编码器(VAEs)被广泛采用,但它们在有效生成具有有限实例的类的样本方面遇到了困难。方法:为了解决这个问题,我们提出了一种新的特征解缠自编码器(FDAE),旨在在心电数据的对比学习框架下剖析各种生成因素,以促进新的心电样本的生成。FDAE采用新的方法增强和扩展声发射结构,包括:(1)将潜在空间划分为三个不同的表示,以捕获各种生成因素;(2)利用对比损失函数提高特征解纠缠能力;(3)结合额外的分类器来增强表征学习,以及旨在提高合成信号真实感的鉴别器。此外,我们的FDAE通过交换现有信号的潜在代码并将与患者无关的表示与VAE随机生成的表示自由组合或替换来生成新信号。为了验证我们的方法,我们在公开可用的MIT-BIH心律失常数据库上进行了心跳分类实验,使用FAKE-train/FAKE-test分区和数据增强。结果表明,FDAE能够提高心电分类器的性能,在心电信号合成方面具有优势。将该模型应用于Icentia11K数据集,并进行分类增强实验。结果进一步突出了该模型在心电综合中较强的泛化能力。意义:这项工作有可能提高ECG分析的深度学习模型的鲁棒性和泛化,特别是在医疗应用中,罕见的心脏事件在可用数据集中往往代表性不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG signal generation using feature disentanglement auto-encoder.

Objective.The demand for electrocardiogram (ECG) datasets, particularly those containing rare classes, poses a significant challenge as deep learning becomes increasingly prevalent in ECG signal research. While generative adversarial networks (GANs) and variational autoencoders (VAEs) are widely adopted, they encounter difficulties in effectively generating samples for classes with limited instances.Approach.To address this issue, we propose a novelFeatureDisentanglement Auto-Encoder (FDAE) designed to dissect various generative factors under a contrastive learning framework within ECG data to facilitate the generation of new ECG samples. The FDAE enhances and extends the AE structure with novel methodologies, which involve: (1) partitioning the latent space into three distinct representations to capture various generative factors; (2) utilizing a contrastive loss function to improve feature disentanglement capabilities; and (3) incorporating additional classifiers to enhance representation learning, alongside a discriminator aimed at boosting the realism of synthesized signals. Furthermore, our FDAE generates new signals by swapping latent codes of existing signals and combining freely or substituting patient-independent representations with those randomly generated by a VAE.Main results.To validate our approach, we conduct heartbeat classification experiments on the publicly available MIT-BIH arrhythmia database, using FAKE-train/FAKE-test partitions and data augmentation. The results highlight the FDAE's ability to improve ECG classifier performance and excel in synthesizing ECG signals. Furthermore, we apply the model to the Icentia11K dataset and conducted classification enhancement experiments. The results further highlight the model's strong generalization ability in ECG synthesis.Significance.This work has the potential to improve the robustness and generalization of deep learning models for ECG analysis, particularly in medical applications where rare cardiac events are often underrepresented in available datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信