Huanling Zhang, Jiaxin Wu, Lei Cui, Tiantian Wang, Huan Jin, Hui Guo, Chunyuan Xie, Lin Li, Xiaojuan Wang, Zining Wang
{"title":"吡硫酮锌改变错配修复触发肿瘤免疫原性。","authors":"Huanling Zhang, Jiaxin Wu, Lei Cui, Tiantian Wang, Huan Jin, Hui Guo, Chunyuan Xie, Lin Li, Xiaojuan Wang, Zining Wang","doi":"10.1038/s41388-024-03272-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8<sup>+</sup> T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8<sup>+</sup> T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity.\",\"authors\":\"Huanling Zhang, Jiaxin Wu, Lei Cui, Tiantian Wang, Huan Jin, Hui Guo, Chunyuan Xie, Lin Li, Xiaojuan Wang, Zining Wang\",\"doi\":\"10.1038/s41388-024-03272-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8<sup>+</sup> T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8<sup>+</sup> T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-024-03272-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03272-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity.
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8+ T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8+ T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.