{"title":"通过整合转录组和全基因组亚硫酸氢盐测序分析,确定参与先前运动减轻周围神经性疼痛的潜在干预目标。","authors":"BingLin Chen, Ting Wang, ChenChen Zhu, Chan Gong, JieWen Zheng, YiLi Zheng, JiaBao Guo","doi":"10.1007/s12035-025-04696-w","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were used as the main observation indicators to evaluate behavioral changes associated with pain. In this study, 6-week swimming training before CCI prevented later chronic pain. In particular, CCI rats with prior exercise showed a significant increase in the MWT and TWL of the injured lateral hind paw compared with CCI rats without exercise on days 14, 21, and 28 after CCI. Whole-genome bisulfite sequencing from the injured lumbar (L4-L6) DRGs on the 28th day after surgery was detected. We also generated DNA methylation maps of the two comparisons (sham group vs. CCI and CCI groups vs. CCI_Ex group), and 396 overlapping differentially methylated region-related genes were found between the two comparisons. Moreover, we integrated RNA sequencing to understand the mechanism by which differential DNA methylation after CCI may influence gene expression. Finally, Ryr1 and Xirp2 were identified through association analysis of two omics and quantitative reverse-transcription polymerase chain reaction, respectively. The methylation levels of Ryr1 and Xirp2 were upregulated with a corresponding increase in their mRNA expression in the DRGs of CCI rats, whereas prior exercise downregulated Ryr1 methylation and restore its expression level. Functional enrichment analysis of both omics found that the calcium signaling pathway was significantly enriched. Therefore, the potential intervention targets (Ryr1 and Xirp2) in L4-L6 DRGs may be involved in prior exercise that attenuates PNP induced by CCI. This study provides crucial insights into the epigenetic regulation of PNP responses to prior exercise.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"6562-6575"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Potential Intervention Targets Involved in Prior Exercise that Attenuates Peripheral Neuropathic Pain by Integrating Transcriptome and Whole-genome Bisulfite Sequencing Analyses.\",\"authors\":\"BingLin Chen, Ting Wang, ChenChen Zhu, Chan Gong, JieWen Zheng, YiLi Zheng, JiaBao Guo\",\"doi\":\"10.1007/s12035-025-04696-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were used as the main observation indicators to evaluate behavioral changes associated with pain. In this study, 6-week swimming training before CCI prevented later chronic pain. In particular, CCI rats with prior exercise showed a significant increase in the MWT and TWL of the injured lateral hind paw compared with CCI rats without exercise on days 14, 21, and 28 after CCI. Whole-genome bisulfite sequencing from the injured lumbar (L4-L6) DRGs on the 28th day after surgery was detected. We also generated DNA methylation maps of the two comparisons (sham group vs. CCI and CCI groups vs. CCI_Ex group), and 396 overlapping differentially methylated region-related genes were found between the two comparisons. Moreover, we integrated RNA sequencing to understand the mechanism by which differential DNA methylation after CCI may influence gene expression. Finally, Ryr1 and Xirp2 were identified through association analysis of two omics and quantitative reverse-transcription polymerase chain reaction, respectively. The methylation levels of Ryr1 and Xirp2 were upregulated with a corresponding increase in their mRNA expression in the DRGs of CCI rats, whereas prior exercise downregulated Ryr1 methylation and restore its expression level. Functional enrichment analysis of both omics found that the calcium signaling pathway was significantly enriched. Therefore, the potential intervention targets (Ryr1 and Xirp2) in L4-L6 DRGs may be involved in prior exercise that attenuates PNP induced by CCI. This study provides crucial insights into the epigenetic regulation of PNP responses to prior exercise.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"6562-6575\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04696-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04696-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Identification of Potential Intervention Targets Involved in Prior Exercise that Attenuates Peripheral Neuropathic Pain by Integrating Transcriptome and Whole-genome Bisulfite Sequencing Analyses.
Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were used as the main observation indicators to evaluate behavioral changes associated with pain. In this study, 6-week swimming training before CCI prevented later chronic pain. In particular, CCI rats with prior exercise showed a significant increase in the MWT and TWL of the injured lateral hind paw compared with CCI rats without exercise on days 14, 21, and 28 after CCI. Whole-genome bisulfite sequencing from the injured lumbar (L4-L6) DRGs on the 28th day after surgery was detected. We also generated DNA methylation maps of the two comparisons (sham group vs. CCI and CCI groups vs. CCI_Ex group), and 396 overlapping differentially methylated region-related genes were found between the two comparisons. Moreover, we integrated RNA sequencing to understand the mechanism by which differential DNA methylation after CCI may influence gene expression. Finally, Ryr1 and Xirp2 were identified through association analysis of two omics and quantitative reverse-transcription polymerase chain reaction, respectively. The methylation levels of Ryr1 and Xirp2 were upregulated with a corresponding increase in their mRNA expression in the DRGs of CCI rats, whereas prior exercise downregulated Ryr1 methylation and restore its expression level. Functional enrichment analysis of both omics found that the calcium signaling pathway was significantly enriched. Therefore, the potential intervention targets (Ryr1 and Xirp2) in L4-L6 DRGs may be involved in prior exercise that attenuates PNP induced by CCI. This study provides crucial insights into the epigenetic regulation of PNP responses to prior exercise.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.