Y Kutsenko, L P Iñiguez, A Barreda, L Pardo-Marín, A Toval, D Garrigos, M Martínez-Morga, S Pujante, B Ribeiro Do-Couto, K Y Tseng, J J Cerón, M Garaulet, M B Wisniewska, M Irimia, J L Ferran
{"title":"运动时间对雄性青春期大鼠脂肪组织增加的影响是不同的。","authors":"Y Kutsenko, L P Iñiguez, A Barreda, L Pardo-Marín, A Toval, D Garrigos, M Martínez-Morga, S Pujante, B Ribeiro Do-Couto, K Y Tseng, J J Cerón, M Garaulet, M B Wisniewska, M Irimia, J L Ferran","doi":"10.1016/j.molmet.2025.102100","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model. Rats were subjected to one of four conditions during their adolescence: early active phase control or exercise (EAC or EAE; ZT13), and late active phase control or exercise (LAC or LAE; ZT23). The effects of exercise timing were assessed at the level of subcutaneous and visceral adipose tissue transcriptome, body composition, hypothalamic expression of orexigenic and anorexigenic genes, blood serum markers and 24-hour core body temperature patterns. We found that late active phase exercise (ZT23) greatly upregulated pathways of lipid synthesis, glycolysis and NADH shuttles in LAE rats, compared to LAC or EAE. Conversely, LAE rats showed notably lower content of adipose tissue. In addition, LAE rats showed signs of impaired FGF21-adiponectin axis compared to other groups. Finally, LAE rats showed higher post-exercise core body temperature compared to other groups. Our results thus indicate that our exercise protocol induced an unusual effect characterized by enhanced lipid synthesis but reduced adipose tissue content in late active phase but not early active phase exercise during adolescence.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102100"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing of exercise differentially impacts adipose tissue gain in male adolescent rats.\",\"authors\":\"Y Kutsenko, L P Iñiguez, A Barreda, L Pardo-Marín, A Toval, D Garrigos, M Martínez-Morga, S Pujante, B Ribeiro Do-Couto, K Y Tseng, J J Cerón, M Garaulet, M B Wisniewska, M Irimia, J L Ferran\",\"doi\":\"10.1016/j.molmet.2025.102100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model. Rats were subjected to one of four conditions during their adolescence: early active phase control or exercise (EAC or EAE; ZT13), and late active phase control or exercise (LAC or LAE; ZT23). The effects of exercise timing were assessed at the level of subcutaneous and visceral adipose tissue transcriptome, body composition, hypothalamic expression of orexigenic and anorexigenic genes, blood serum markers and 24-hour core body temperature patterns. We found that late active phase exercise (ZT23) greatly upregulated pathways of lipid synthesis, glycolysis and NADH shuttles in LAE rats, compared to LAC or EAE. Conversely, LAE rats showed notably lower content of adipose tissue. In addition, LAE rats showed signs of impaired FGF21-adiponectin axis compared to other groups. Finally, LAE rats showed higher post-exercise core body temperature compared to other groups. Our results thus indicate that our exercise protocol induced an unusual effect characterized by enhanced lipid synthesis but reduced adipose tissue content in late active phase but not early active phase exercise during adolescence.</p>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\" \",\"pages\":\"102100\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molmet.2025.102100\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102100","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Timing of exercise differentially impacts adipose tissue gain in male adolescent rats.
Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model. Rats were subjected to one of four conditions during their adolescence: early active phase control or exercise (EAC or EAE; ZT13), and late active phase control or exercise (LAC or LAE; ZT23). The effects of exercise timing were assessed at the level of subcutaneous and visceral adipose tissue transcriptome, body composition, hypothalamic expression of orexigenic and anorexigenic genes, blood serum markers and 24-hour core body temperature patterns. We found that late active phase exercise (ZT23) greatly upregulated pathways of lipid synthesis, glycolysis and NADH shuttles in LAE rats, compared to LAC or EAE. Conversely, LAE rats showed notably lower content of adipose tissue. In addition, LAE rats showed signs of impaired FGF21-adiponectin axis compared to other groups. Finally, LAE rats showed higher post-exercise core body temperature compared to other groups. Our results thus indicate that our exercise protocol induced an unusual effect characterized by enhanced lipid synthesis but reduced adipose tissue content in late active phase but not early active phase exercise during adolescence.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.