Yang Ding, Huan Yang, Jie Gao, Can Tang, Yu-Yuan Peng, Xin-Mei Ma, Sen Li, Hai-Yan Wang, Xiu-Min Lu, Yong-Tang Wang
{"title":"突触-线粒体运输:神经适应和退化的机制。","authors":"Yang Ding, Huan Yang, Jie Gao, Can Tang, Yu-Yuan Peng, Xin-Mei Ma, Sen Li, Hai-Yan Wang, Xiu-Min Lu, Yong-Tang Wang","doi":"10.1007/s11010-025-05209-y","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.\",\"authors\":\"Yang Ding, Huan Yang, Jie Gao, Can Tang, Yu-Yuan Peng, Xin-Mei Ma, Sen Li, Hai-Yan Wang, Xiu-Min Lu, Yong-Tang Wang\",\"doi\":\"10.1007/s11010-025-05209-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05209-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05209-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.