{"title":"研究表皮细胞粘附的RNA干扰方法。","authors":"Anamika Dutta, Michele Calder, Lina Dagnino","doi":"10.1007/7651_2024_584","DOIUrl":null,"url":null,"abstract":"<p><p>In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA Interference Approaches to Study Epidermal Cell Adhesion.\",\"authors\":\"Anamika Dutta, Michele Calder, Lina Dagnino\",\"doi\":\"10.1007/7651_2024_584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
RNA Interference Approaches to Study Epidermal Cell Adhesion.
In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.