{"title":"通过球体转移在柱板平台上可重复的,大规模生产人脑类器官(HBOs)。","authors":"Pranav Joshi, Prabha Acharya, Mona Zolfaghar, Manav Goud Vanga, Sunil Shrestha, Moo-Yeal Lee","doi":"10.1007/7651_2024_604","DOIUrl":null,"url":null,"abstract":"<p><p>Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer.\",\"authors\":\"Pranav Joshi, Prabha Acharya, Mona Zolfaghar, Manav Goud Vanga, Sunil Shrestha, Moo-Yeal Lee\",\"doi\":\"10.1007/7651_2024_604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer.
Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.