通过球体转移在柱板平台上可重复的,大规模生产人脑类器官(HBOs)。

Q4 Biochemistry, Genetics and Molecular Biology
Pranav Joshi, Prabha Acharya, Mona Zolfaghar, Manav Goud Vanga, Sunil Shrestha, Moo-Yeal Lee
{"title":"通过球体转移在柱板平台上可重复的,大规模生产人脑类器官(HBOs)。","authors":"Pranav Joshi, Prabha Acharya, Mona Zolfaghar, Manav Goud Vanga, Sunil Shrestha, Moo-Yeal Lee","doi":"10.1007/7651_2024_604","DOIUrl":null,"url":null,"abstract":"<p><p>Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer.\",\"authors\":\"Pranav Joshi, Prabha Acharya, Mona Zolfaghar, Manav Goud Vanga, Sunil Shrestha, Moo-Yeal Lee\",\"doi\":\"10.1007/7651_2024_604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

人脑类器官(HBOs)来源于多能干细胞,由于其结构和功能与胎儿脑组织相似,因此在疾病建模和高通量化合物筛选方面具有很大的潜力。这些类器官可以模拟大脑发育的早期阶段,为研究正常和紊乱的神经发育提供了一个有价值的体外模型。然而,目前产生HBOs的方法通常是低通量和可变的类器官分化,并且涉及冗长的劳动密集型过程,限制了它们在学术和工业研究中的广泛应用。主要挑战包括生长因子的高成本、类器官大小和功能的可变性、次优成熟以及人工处理降低了产量。在这里,我们提出了一个标准操作程序(SOP),用于HBOs的可扩展生产,使用一种新的柱板系统,简化了球体转移过程,并允许微型类器官培养。该方法可重复生成HBOs,无需大量人工干预,为高通量筛选(HTS)提供了简化的解决方案。由此产生的HBOs柱板可用于化合物测试、原位染色和分析,为推进神经发育研究和治疗筛选提供了一个有效的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer.

Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信