黄河口潮间带沉积物微生物群落的空间格局

IF 3.3 3区 生物学 Q2 ECOLOGY
Zhe Wang, Md Tariful Islam Fuad, Jiwen Liu, Kuixuan Lin, Lijuan Liu, Chen Gao, Weiyun Wang, Xiaoshou Liu
{"title":"黄河口潮间带沉积物微生物群落的空间格局","authors":"Zhe Wang, Md Tariful Islam Fuad, Jiwen Liu, Kuixuan Lin, Lijuan Liu, Chen Gao, Weiyun Wang, Xiaoshou Liu","doi":"10.1007/s00248-025-02494-4","DOIUrl":null,"url":null,"abstract":"<p><p>Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems. To date, our knowledge of the spatial patterns of bacterial and archaeal communities is limited. In this study, we investigated the spatial profile of bacterial and archaeal communities and their co-occurrence patterns, functional roles, and environmental driving factors in the intertidal sediments of the YRE from June to July, 2019. The results showed that Proteobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were the dominant bacterial phyla, whereas Nanoarchaeaeota, Euryarchaeota and Thaumarchaeota were the dominant archaeal phyla in the intertidal sediments of the YRE. Diversity indices and differential abundance analyses revealed significant (p < 0.05) differences in the bacterial and archaeal communities in the intertidal sediments of the YRE. Bacterial communities demonstrated distinct correlations with heavy metals and pollutants. Six archaeal genera exhibited co-occurrence patterns with bacterial genera. Functions associated with sulfur cycles, disease, and pollution were specific to bacterial communities. This study presents a detailed outline of the spatial patterns of microbial communities in the YRE, enriching our understanding of microbial ecology, especially of bacteria and archaea.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"173"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial Patterns of Microbial Communities in Intertidal Sediments of the Yellow River Estuary, China.\",\"authors\":\"Zhe Wang, Md Tariful Islam Fuad, Jiwen Liu, Kuixuan Lin, Lijuan Liu, Chen Gao, Weiyun Wang, Xiaoshou Liu\",\"doi\":\"10.1007/s00248-025-02494-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems. To date, our knowledge of the spatial patterns of bacterial and archaeal communities is limited. In this study, we investigated the spatial profile of bacterial and archaeal communities and their co-occurrence patterns, functional roles, and environmental driving factors in the intertidal sediments of the YRE from June to July, 2019. The results showed that Proteobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were the dominant bacterial phyla, whereas Nanoarchaeaeota, Euryarchaeota and Thaumarchaeota were the dominant archaeal phyla in the intertidal sediments of the YRE. Diversity indices and differential abundance analyses revealed significant (p < 0.05) differences in the bacterial and archaeal communities in the intertidal sediments of the YRE. Bacterial communities demonstrated distinct correlations with heavy metals and pollutants. Six archaeal genera exhibited co-occurrence patterns with bacterial genera. Functions associated with sulfur cycles, disease, and pollution were specific to bacterial communities. This study presents a detailed outline of the spatial patterns of microbial communities in the YRE, enriching our understanding of microbial ecology, especially of bacteria and archaea.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"173\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-025-02494-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02494-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

河口生态系统是地球上最重要的自然生态系统之一,对人类的生存和发展作出了重大贡献。黄河口是中国第二大入海口。微生物群落在河口生态系统的物质循环和能量流动中起着重要作用。迄今为止,我们对细菌和古细菌群落的空间格局的了解是有限的。研究了2019年6 - 7月长江三角洲潮间带沉积物中细菌和古细菌群落的空间分布特征、共生格局、功能作用和环境驱动因素。结果表明:变形菌门、拟杆菌门、绿藻门和plantomycetes是YRE潮间带沉积物中优势菌门,而纳米古细菌门、Euryarchaeota和Thaumarchaeota是优势古细菌门。多样性指数和差异丰度分析显示显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Patterns of Microbial Communities in Intertidal Sediments of the Yellow River Estuary, China.

Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems. To date, our knowledge of the spatial patterns of bacterial and archaeal communities is limited. In this study, we investigated the spatial profile of bacterial and archaeal communities and their co-occurrence patterns, functional roles, and environmental driving factors in the intertidal sediments of the YRE from June to July, 2019. The results showed that Proteobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were the dominant bacterial phyla, whereas Nanoarchaeaeota, Euryarchaeota and Thaumarchaeota were the dominant archaeal phyla in the intertidal sediments of the YRE. Diversity indices and differential abundance analyses revealed significant (p < 0.05) differences in the bacterial and archaeal communities in the intertidal sediments of the YRE. Bacterial communities demonstrated distinct correlations with heavy metals and pollutants. Six archaeal genera exhibited co-occurrence patterns with bacterial genera. Functions associated with sulfur cycles, disease, and pollution were specific to bacterial communities. This study presents a detailed outline of the spatial patterns of microbial communities in the YRE, enriching our understanding of microbial ecology, especially of bacteria and archaea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信