{"title":"Pogo转座子提供了限制癌症生长的工具。","authors":"Elina Zueva, Marianne Burbage","doi":"10.1002/1878-0261.13801","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al. in Molecular Cell that identify Pogo transposon-derived gene POGK as tumor suppressor in triple-negative breast cancer (TNBC) by regulating ribosome biogenesis and restricting cell growth. An isoform-switch in TNBC results in the loss of POGK capacity to recruit the epigenetic corepressor TRIM28 and to exert its repressive functions. These findings shed light on the potential for TE-derived genes in providing new therapeutic opportunities for highly malignant TNBC.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pogo transposons provide tools to restrict cancer growth.\",\"authors\":\"Elina Zueva, Marianne Burbage\",\"doi\":\"10.1002/1878-0261.13801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al. in Molecular Cell that identify Pogo transposon-derived gene POGK as tumor suppressor in triple-negative breast cancer (TNBC) by regulating ribosome biogenesis and restricting cell growth. An isoform-switch in TNBC results in the loss of POGK capacity to recruit the epigenetic corepressor TRIM28 and to exert its repressive functions. These findings shed light on the potential for TE-derived genes in providing new therapeutic opportunities for highly malignant TNBC.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13801\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13801","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Pogo transposons provide tools to restrict cancer growth.
Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al. in Molecular Cell that identify Pogo transposon-derived gene POGK as tumor suppressor in triple-negative breast cancer (TNBC) by regulating ribosome biogenesis and restricting cell growth. An isoform-switch in TNBC results in the loss of POGK capacity to recruit the epigenetic corepressor TRIM28 and to exert its repressive functions. These findings shed light on the potential for TE-derived genes in providing new therapeutic opportunities for highly malignant TNBC.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.