Shu Wang, Ye Gong, Yang Ji, Dandan Liu, Hao Pan, Weisan Pan
{"title":"M1巨噬细胞膜包裹的镍砷纳米复合物促进肝细胞癌的协同治疗。","authors":"Shu Wang, Ye Gong, Yang Ji, Dandan Liu, Hao Pan, Weisan Pan","doi":"10.1016/j.xphs.2025.01.010","DOIUrl":null,"url":null,"abstract":"<p><p>By inducing apoptosis, promoting differentiation and reducing the migration of cancer cells, arsenic has a higher therapeutic effect and lower risk of recurrence and metastasis than conventional anticancer drugs. However, the low bioavailability and adverse side effects of arsenic hinder its application in hepatocellular carcinoma (HCC). Therefore, a M1 macrophage membrane-coated nickel-arsenic/polydopamine nanocomplex (NiAsOx@P@M) was constructed to enhance the combined antitumor effects of chemotherapy and immunotherapy. The nanocomplex consisted of a nickel-arsenic oxide core, a polydopamine (PDA) shell and a M1 macrophage membrane (MM) coating. MM endowed the nanocomplex with natural tumor homing and immune escape properties, and the nanocomplex was gradually accumulated in the tumor tissue during the internal circulation. The acid response of PDA led to its degradation in the tumor microenvironment (TME). The degradation product dopamine (DA) and MM jointly promoted tumor immunity and regulated tumor-associated macrophages (TAMs) to repolarization M1 phenotype. The nickel-arsenic oxide core dissociated in an acid environment and released arsenic, thus killing tumor cells. In summary, the nanocomplex provided a promising delivery strategy for arsenic therapy of HCC and a novel design idea for the conversion of inorganic drugs into organic preparations.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M1 macrophage membrane-coated nickel-arsenic nanocomplex promoting synergistic treatment of hepatocellular carcinoma.\",\"authors\":\"Shu Wang, Ye Gong, Yang Ji, Dandan Liu, Hao Pan, Weisan Pan\",\"doi\":\"10.1016/j.xphs.2025.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By inducing apoptosis, promoting differentiation and reducing the migration of cancer cells, arsenic has a higher therapeutic effect and lower risk of recurrence and metastasis than conventional anticancer drugs. However, the low bioavailability and adverse side effects of arsenic hinder its application in hepatocellular carcinoma (HCC). Therefore, a M1 macrophage membrane-coated nickel-arsenic/polydopamine nanocomplex (NiAsOx@P@M) was constructed to enhance the combined antitumor effects of chemotherapy and immunotherapy. The nanocomplex consisted of a nickel-arsenic oxide core, a polydopamine (PDA) shell and a M1 macrophage membrane (MM) coating. MM endowed the nanocomplex with natural tumor homing and immune escape properties, and the nanocomplex was gradually accumulated in the tumor tissue during the internal circulation. The acid response of PDA led to its degradation in the tumor microenvironment (TME). The degradation product dopamine (DA) and MM jointly promoted tumor immunity and regulated tumor-associated macrophages (TAMs) to repolarization M1 phenotype. The nickel-arsenic oxide core dissociated in an acid environment and released arsenic, thus killing tumor cells. In summary, the nanocomplex provided a promising delivery strategy for arsenic therapy of HCC and a novel design idea for the conversion of inorganic drugs into organic preparations.</p>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xphs.2025.01.010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.01.010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
By inducing apoptosis, promoting differentiation and reducing the migration of cancer cells, arsenic has a higher therapeutic effect and lower risk of recurrence and metastasis than conventional anticancer drugs. However, the low bioavailability and adverse side effects of arsenic hinder its application in hepatocellular carcinoma (HCC). Therefore, a M1 macrophage membrane-coated nickel-arsenic/polydopamine nanocomplex (NiAsOx@P@M) was constructed to enhance the combined antitumor effects of chemotherapy and immunotherapy. The nanocomplex consisted of a nickel-arsenic oxide core, a polydopamine (PDA) shell and a M1 macrophage membrane (MM) coating. MM endowed the nanocomplex with natural tumor homing and immune escape properties, and the nanocomplex was gradually accumulated in the tumor tissue during the internal circulation. The acid response of PDA led to its degradation in the tumor microenvironment (TME). The degradation product dopamine (DA) and MM jointly promoted tumor immunity and regulated tumor-associated macrophages (TAMs) to repolarization M1 phenotype. The nickel-arsenic oxide core dissociated in an acid environment and released arsenic, thus killing tumor cells. In summary, the nanocomplex provided a promising delivery strategy for arsenic therapy of HCC and a novel design idea for the conversion of inorganic drugs into organic preparations.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.