组氨酸缓冲液在铁催化形成药物制剂中氧化物质中的作用:机理研究。

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Yilue Zhang, Yaqi Wu, Christian Schöneich
{"title":"组氨酸缓冲液在铁催化形成药物制剂中氧化物质中的作用:机理研究。","authors":"Yilue Zhang, Yaqi Wu, Christian Schöneich","doi":"10.1016/j.xphs.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood. Here, we investigate the formation of radical intermediates using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a probe. Interestingly, over the time course of our experiments histidine (His) is the only buffer that promotes significant radical production during Fe(III)-catalyzed decomposition of H₂O₂, in contrast to other common pharmaceutical buffers such as citrate, succinate, adipate, and 2-(N-morpholino)ethanesulfonic acid (MES). The critical role of His in these degradation reactions is attributed to its unique, higher affinity for Fe(II) as compared to Fe(III), facilitating the reduction of Fe(III) to Fe(II) and subsequent Fenton and/or Fenton-like reactions with H₂O₂.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: Mechanistic studies.\",\"authors\":\"Yilue Zhang, Yaqi Wu, Christian Schöneich\",\"doi\":\"10.1016/j.xphs.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood. Here, we investigate the formation of radical intermediates using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a probe. Interestingly, over the time course of our experiments histidine (His) is the only buffer that promotes significant radical production during Fe(III)-catalyzed decomposition of H₂O₂, in contrast to other common pharmaceutical buffers such as citrate, succinate, adipate, and 2-(N-morpholino)ethanesulfonic acid (MES). The critical role of His in these degradation reactions is attributed to its unique, higher affinity for Fe(II) as compared to Fe(III), facilitating the reduction of Fe(III) to Fe(II) and subsequent Fenton and/or Fenton-like reactions with H₂O₂.</p>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xphs.2025.01.003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.01.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

铁催化氧化反应是药物配方中常见的降解途径。缓冲液可以影响铁(Fe)和过氧化氢(h2o2)促进的氧化反应。然而,从机理上讲,缓冲液在这种反应中的具体作用还没有得到很好的理解。在这里,我们使用5,5-二甲基-1-吡咯啉n -氧化物(DMPO)作为探针来研究自由基中间体的形成。有趣的是,在我们的实验过程中,组氨酸(His)是唯一一种在Fe(III)催化H₂O₂分解过程中促进自由基产生的缓冲液,而其他常见的药物缓冲液如柠檬酸盐、琥珀酸盐、己二酸盐和2-(N-morpholino)乙磺酸(MES)。His在这些降解反应中的关键作用归因于其与Fe(III)相比对Fe(II)具有更高的亲和力,有助于将Fe(III)还原为Fe(II)并随后与H₂O₂进行Fenton和/或Fenton样反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: Mechanistic studies.

Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood. Here, we investigate the formation of radical intermediates using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a probe. Interestingly, over the time course of our experiments histidine (His) is the only buffer that promotes significant radical production during Fe(III)-catalyzed decomposition of H₂O₂, in contrast to other common pharmaceutical buffers such as citrate, succinate, adipate, and 2-(N-morpholino)ethanesulfonic acid (MES). The critical role of His in these degradation reactions is attributed to its unique, higher affinity for Fe(II) as compared to Fe(III), facilitating the reduction of Fe(III) to Fe(II) and subsequent Fenton and/or Fenton-like reactions with H₂O₂.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信