Caroline Brandão-Teles, Victor Corasolla Carregari, Guilherme Reis-de-Oliveira, Bradley J. Smith, Yane Chaves, Aline Valéria Sousa Santos, Erick Martins de Carvalho Pinheiro, Caio C. Oliveira, Andre Schwambach Vieira, Fernanda Crunfli, Daniel Martins-de-Souza
{"title":"hnRNP A1剪接抑制对脑再髓鞘蛋白组的影响。","authors":"Caroline Brandão-Teles, Victor Corasolla Carregari, Guilherme Reis-de-Oliveira, Bradley J. Smith, Yane Chaves, Aline Valéria Sousa Santos, Erick Martins de Carvalho Pinheiro, Caio C. Oliveira, Andre Schwambach Vieira, Fernanda Crunfli, Daniel Martins-de-Souza","doi":"10.1111/jnc.16304","DOIUrl":null,"url":null,"abstract":"<p>Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA–binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone–induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions. Significant alterations in essential myelination proteins highlighted the involvement of hnRNP A1 in maintaining myelin integrity. Pathways related to sphingolipid and endocannabinoid signaling were affected, as well as the synaptic vesicle cycle and GABAergic synapses. Although behavioral impairments were not observed, molecular changes suggest potential links to memory, synaptic function, and neurotransmission processes. These findings enhance our understanding of the multifaceted roles of hnRNP A1 in the central nervous system, providing valuable insights for future investigations and therapeutic interventions in neurodegenerative and demyelinating diseases.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752419/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome\",\"authors\":\"Caroline Brandão-Teles, Victor Corasolla Carregari, Guilherme Reis-de-Oliveira, Bradley J. Smith, Yane Chaves, Aline Valéria Sousa Santos, Erick Martins de Carvalho Pinheiro, Caio C. Oliveira, Andre Schwambach Vieira, Fernanda Crunfli, Daniel Martins-de-Souza\",\"doi\":\"10.1111/jnc.16304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA–binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone–induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions. Significant alterations in essential myelination proteins highlighted the involvement of hnRNP A1 in maintaining myelin integrity. Pathways related to sphingolipid and endocannabinoid signaling were affected, as well as the synaptic vesicle cycle and GABAergic synapses. Although behavioral impairments were not observed, molecular changes suggest potential links to memory, synaptic function, and neurotransmission processes. These findings enhance our understanding of the multifaceted roles of hnRNP A1 in the central nervous system, providing valuable insights for future investigations and therapeutic interventions in neurodegenerative and demyelinating diseases.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16304\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome
Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA–binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone–induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions. Significant alterations in essential myelination proteins highlighted the involvement of hnRNP A1 in maintaining myelin integrity. Pathways related to sphingolipid and endocannabinoid signaling were affected, as well as the synaptic vesicle cycle and GABAergic synapses. Although behavioral impairments were not observed, molecular changes suggest potential links to memory, synaptic function, and neurotransmission processes. These findings enhance our understanding of the multifaceted roles of hnRNP A1 in the central nervous system, providing valuable insights for future investigations and therapeutic interventions in neurodegenerative and demyelinating diseases.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.