膜骨架转变的动力机制。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Mayte Bonilla-Quintana, Andrea Ghisleni, Nils C Gauthier, Padmini Rangamani
{"title":"膜骨架转变的动力机制。","authors":"Mayte Bonilla-Quintana, Andrea Ghisleni, Nils C Gauthier, Padmini Rangamani","doi":"10.1242/jcs.263473","DOIUrl":null,"url":null,"abstract":"<p><p>The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments. In this work, we developed a generalized network model for the membrane skeleton integrated with myosin contractility and membrane mechanics to investigate the response of the spectrin meshwork to mechanical loading. We observed that the force generated by membrane bending is important to maintain a regular skeletal structure suggesting that the membrane is not just supported by the skeleton, but has an active contribution to the stability of the cell structure. We found that spectrin and myosin turnover are necessary for the transition between stress and rest states in the skeleton. Simulations of a fully connected network representing a whole cell show that the surface area constraint of the plasma membrane and volume restriction of the cytoplasm enhance the stability of the membrane skeleton. Furthermore, we showed that cell attachment through adhesions promotes cell shape stabilization.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic mechanisms for membrane skeleton transitions.\",\"authors\":\"Mayte Bonilla-Quintana, Andrea Ghisleni, Nils C Gauthier, Padmini Rangamani\",\"doi\":\"10.1242/jcs.263473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments. In this work, we developed a generalized network model for the membrane skeleton integrated with myosin contractility and membrane mechanics to investigate the response of the spectrin meshwork to mechanical loading. We observed that the force generated by membrane bending is important to maintain a regular skeletal structure suggesting that the membrane is not just supported by the skeleton, but has an active contribution to the stability of the cell structure. We found that spectrin and myosin turnover are necessary for the transition between stress and rest states in the skeleton. Simulations of a fully connected network representing a whole cell show that the surface area constraint of the plasma membrane and volume restriction of the cytoplasm enhance the stability of the membrane skeleton. Furthermore, we showed that cell attachment through adhesions promotes cell shape stabilization.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263473\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263473","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

质膜和下面的骨架形成了真核细胞的保护屏障。形成这种复杂复合材料的分子分子在机械应力作用下不断重新排列。其中一种分子,幽灵蛋白,在膜骨架中无处不在,并由短肌动蛋白丝连接。在这项工作中,我们建立了一个结合肌球蛋白收缩性和膜力学的膜骨架广义网络模型,以研究谱网对机械载荷的响应。我们观察到膜弯曲产生的力对维持正常的骨骼结构很重要,这表明膜不仅由骨骼支撑,而且对细胞结构的稳定性有积极的贡献。我们发现spectrin和myosin的转换对于骨骼在应激状态和休息状态之间的转换是必要的。对代表整个细胞的全连接网络的模拟表明,质膜的表面积约束和细胞质的体积限制增强了膜骨架的稳定性。此外,我们还发现通过黏附的细胞附着促进了细胞形状的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic mechanisms for membrane skeleton transitions.

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments. In this work, we developed a generalized network model for the membrane skeleton integrated with myosin contractility and membrane mechanics to investigate the response of the spectrin meshwork to mechanical loading. We observed that the force generated by membrane bending is important to maintain a regular skeletal structure suggesting that the membrane is not just supported by the skeleton, but has an active contribution to the stability of the cell structure. We found that spectrin and myosin turnover are necessary for the transition between stress and rest states in the skeleton. Simulations of a fully connected network representing a whole cell show that the surface area constraint of the plasma membrane and volume restriction of the cytoplasm enhance the stability of the membrane skeleton. Furthermore, we showed that cell attachment through adhesions promotes cell shape stabilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信