{"title":"多源药物联合和全方位特征融合预测药物-药物相互作用事件。","authors":"Shiwei Gao, Jingjing Xie, Yizhao Zhao","doi":"10.1016/j.jbi.2025.104772","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In the medical context where polypharmacy is increasingly common, accurately predicting drug-drug interactions (DDIs) is necessary for enhancing clinical medication safety and personalized treatment. Despite progress in identifying potential DDIs, a deep understanding of the underlying mechanisms of DDIs remains limited, constraining the rapid development and clinical application of new drugs.</div></div><div><h3>Methods</h3><div>This study introduces a novel multimodal drug-drug interaction (MMDDI) model based on multi-source drug data and comprehensive feature fusion techniques, aiming to improve the accuracy and depth of DDI prediction. We utilized the real-world DrugBank dataset, which contains rich drug information. Our task was to predict multiple interaction events between drug pairs and analyze the underlying mechanisms of these interactions. The MMDDI model achieves precise predictions through four key stages: feature extraction, drug pairing strategy, fusion network, and multi-source feature integration. We employed advanced data fusion techniques and machine learning algorithms for multidimensional analysis of drug features and interaction events.</div></div><div><h3>Results</h3><div>The MMDDI model was comprehensively evaluated on three representative prediction tasks. Experimental results demonstrated that the MMDDI model outperforms existing technologies in terms of predictive accuracy, generalization ability, and interpretability. Specifically, the MMDDI model achieved an accuracy of 93% on the test set, and the area under the AUC-ROC curve reached 0.9505, showing excellent predictive performance. Furthermore, the model’s interpretability analysis revealed the complex relationships between drug features and interaction mechanisms, providing new insights for clinical medication decisions.</div></div><div><h3>Conclusion</h3><div>The MMDDI model not only improves the accuracy of DDI prediction but also provides significant scientific support for clinical medication safety and drug development by deeply analyzing the mechanisms of drug interactions. These findings have the potential to improve patient medication outcomes and contribute to the development of personalized medicine.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"162 ","pages":"Article 104772"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Source drug combination and Omnidirectional feature fusion approach for predicting Drug-Drug interaction events\",\"authors\":\"Shiwei Gao, Jingjing Xie, Yizhao Zhao\",\"doi\":\"10.1016/j.jbi.2025.104772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>In the medical context where polypharmacy is increasingly common, accurately predicting drug-drug interactions (DDIs) is necessary for enhancing clinical medication safety and personalized treatment. Despite progress in identifying potential DDIs, a deep understanding of the underlying mechanisms of DDIs remains limited, constraining the rapid development and clinical application of new drugs.</div></div><div><h3>Methods</h3><div>This study introduces a novel multimodal drug-drug interaction (MMDDI) model based on multi-source drug data and comprehensive feature fusion techniques, aiming to improve the accuracy and depth of DDI prediction. We utilized the real-world DrugBank dataset, which contains rich drug information. Our task was to predict multiple interaction events between drug pairs and analyze the underlying mechanisms of these interactions. The MMDDI model achieves precise predictions through four key stages: feature extraction, drug pairing strategy, fusion network, and multi-source feature integration. We employed advanced data fusion techniques and machine learning algorithms for multidimensional analysis of drug features and interaction events.</div></div><div><h3>Results</h3><div>The MMDDI model was comprehensively evaluated on three representative prediction tasks. Experimental results demonstrated that the MMDDI model outperforms existing technologies in terms of predictive accuracy, generalization ability, and interpretability. Specifically, the MMDDI model achieved an accuracy of 93% on the test set, and the area under the AUC-ROC curve reached 0.9505, showing excellent predictive performance. Furthermore, the model’s interpretability analysis revealed the complex relationships between drug features and interaction mechanisms, providing new insights for clinical medication decisions.</div></div><div><h3>Conclusion</h3><div>The MMDDI model not only improves the accuracy of DDI prediction but also provides significant scientific support for clinical medication safety and drug development by deeply analyzing the mechanisms of drug interactions. These findings have the potential to improve patient medication outcomes and contribute to the development of personalized medicine.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"162 \",\"pages\":\"Article 104772\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Multi-Source drug combination and Omnidirectional feature fusion approach for predicting Drug-Drug interaction events
Background
In the medical context where polypharmacy is increasingly common, accurately predicting drug-drug interactions (DDIs) is necessary for enhancing clinical medication safety and personalized treatment. Despite progress in identifying potential DDIs, a deep understanding of the underlying mechanisms of DDIs remains limited, constraining the rapid development and clinical application of new drugs.
Methods
This study introduces a novel multimodal drug-drug interaction (MMDDI) model based on multi-source drug data and comprehensive feature fusion techniques, aiming to improve the accuracy and depth of DDI prediction. We utilized the real-world DrugBank dataset, which contains rich drug information. Our task was to predict multiple interaction events between drug pairs and analyze the underlying mechanisms of these interactions. The MMDDI model achieves precise predictions through four key stages: feature extraction, drug pairing strategy, fusion network, and multi-source feature integration. We employed advanced data fusion techniques and machine learning algorithms for multidimensional analysis of drug features and interaction events.
Results
The MMDDI model was comprehensively evaluated on three representative prediction tasks. Experimental results demonstrated that the MMDDI model outperforms existing technologies in terms of predictive accuracy, generalization ability, and interpretability. Specifically, the MMDDI model achieved an accuracy of 93% on the test set, and the area under the AUC-ROC curve reached 0.9505, showing excellent predictive performance. Furthermore, the model’s interpretability analysis revealed the complex relationships between drug features and interaction mechanisms, providing new insights for clinical medication decisions.
Conclusion
The MMDDI model not only improves the accuracy of DDI prediction but also provides significant scientific support for clinical medication safety and drug development by deeply analyzing the mechanisms of drug interactions. These findings have the potential to improve patient medication outcomes and contribute to the development of personalized medicine.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.