人工智能驱动的人表皮生长因子受体2和肿瘤微环境分析在人表皮生长因子受体2扩增的转移性结直肠癌:实验性II期试验的分析。

IF 5.3 2区 医学 Q1 ONCOLOGY
JCO precision oncology Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI:10.1200/PO-24-00385
Mitsuho Imai, Yoshiaki Nakamura, Sangwon Shin, Wataru Okamoto, Takeshi Kato, Taito Esaki, Ken Kato, Yoshito Komatsu, Satoshi Yuki, Toshiki Masuishi, Tomohiro Nishina, Kentaro Sawada, Akihiro Sato, Takeshi Kuwata, Riu Yamashita, Takao Fujisawa, Hideaki Bando, Chan-Young Ock, Satoshi Fujii, Takayuki Yoshino
{"title":"人工智能驱动的人表皮生长因子受体2和肿瘤微环境分析在人表皮生长因子受体2扩增的转移性结直肠癌:实验性II期试验的分析。","authors":"Mitsuho Imai, Yoshiaki Nakamura, Sangwon Shin, Wataru Okamoto, Takeshi Kato, Taito Esaki, Ken Kato, Yoshito Komatsu, Satoshi Yuki, Toshiki Masuishi, Tomohiro Nishina, Kentaro Sawada, Akihiro Sato, Takeshi Kuwata, Riu Yamashita, Takao Fujisawa, Hideaki Bando, Chan-Young Ock, Satoshi Fujii, Takayuki Yoshino","doi":"10.1200/PO-24-00385","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating <i>HER2</i>-amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with <i>HER2</i>-amplified mCRC from the phase II TRIUMPH trial.</p><p><strong>Materials and methods: </strong>AI-powered HER2 quantification continuous score (QCS) and tumor microenvironment (TME) analysis were applied to the prescreening cohort (n = 143) and the TRIUMPH cohort (n = 30). AI analyzers determined the proportions of tumor cells (TCs) with HER2 staining intensity and the densities of various cells in TME, examining their associations with clinical outcomes of TP.</p><p><strong>Results: </strong>The AI-powered HER2 QCS for HER2 immunohistochemistry (IHC) achieved an accuracy of 86.7% against pathologist evaluations, with a 100% accuracy for HER2 IHC 3+ patients. Patients with ≥50% of TCs showing HER2 3+ staining intensity (AI-H3-high) exhibited significantly prolonged progression-free survival (PFS; median PFS, 4.4 <i>v</i> 1.4 months; hazard ratio [HR], 0.12 [95% CI, 0.04 to 0.38]) and overall survival (OS; median OS, 16.5 <i>v</i> 4.1 months; HR, 0.13 [95% CI, 0.05 to 0.38]) compared with the AI-H3-low (<50% group). Stratification among patients with AI-H3-high included TME-high (all lymphocyte, fibroblast, and macrophage densities in the cancer stroma above the median) and TME-low (anything below the median), showing a median PFS of 1.3 and 5.6 months for TME-high and TME-low respectively, with an HR of 0.04 (95% CI, 0.01 to 0.19) for AI-H3-high with TME-low compared with AI-H3-low.</p><p><strong>Conclusion: </strong>AI-powered HER2 QCS and TME analysis demonstrated potential in enhancing treatment response predictions in patients with <i>HER2</i>-amplified mCRC undergoing TP therapy.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"9 ","pages":"e2400385"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Powered Human Epidermal Growth Factor Receptor 2 and Tumor Microenvironment Analysis in Human Epidermal Growth Factor Receptor 2-Amplified Metastatic Colorectal Cancer: Exploratory Analysis of Phase II TRIUMPH Trial.\",\"authors\":\"Mitsuho Imai, Yoshiaki Nakamura, Sangwon Shin, Wataru Okamoto, Takeshi Kato, Taito Esaki, Ken Kato, Yoshito Komatsu, Satoshi Yuki, Toshiki Masuishi, Tomohiro Nishina, Kentaro Sawada, Akihiro Sato, Takeshi Kuwata, Riu Yamashita, Takao Fujisawa, Hideaki Bando, Chan-Young Ock, Satoshi Fujii, Takayuki Yoshino\",\"doi\":\"10.1200/PO-24-00385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating <i>HER2</i>-amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with <i>HER2</i>-amplified mCRC from the phase II TRIUMPH trial.</p><p><strong>Materials and methods: </strong>AI-powered HER2 quantification continuous score (QCS) and tumor microenvironment (TME) analysis were applied to the prescreening cohort (n = 143) and the TRIUMPH cohort (n = 30). AI analyzers determined the proportions of tumor cells (TCs) with HER2 staining intensity and the densities of various cells in TME, examining their associations with clinical outcomes of TP.</p><p><strong>Results: </strong>The AI-powered HER2 QCS for HER2 immunohistochemistry (IHC) achieved an accuracy of 86.7% against pathologist evaluations, with a 100% accuracy for HER2 IHC 3+ patients. Patients with ≥50% of TCs showing HER2 3+ staining intensity (AI-H3-high) exhibited significantly prolonged progression-free survival (PFS; median PFS, 4.4 <i>v</i> 1.4 months; hazard ratio [HR], 0.12 [95% CI, 0.04 to 0.38]) and overall survival (OS; median OS, 16.5 <i>v</i> 4.1 months; HR, 0.13 [95% CI, 0.05 to 0.38]) compared with the AI-H3-low (<50% group). Stratification among patients with AI-H3-high included TME-high (all lymphocyte, fibroblast, and macrophage densities in the cancer stroma above the median) and TME-low (anything below the median), showing a median PFS of 1.3 and 5.6 months for TME-high and TME-low respectively, with an HR of 0.04 (95% CI, 0.01 to 0.19) for AI-H3-high with TME-low compared with AI-H3-low.</p><p><strong>Conclusion: </strong>AI-powered HER2 QCS and TME analysis demonstrated potential in enhancing treatment response predictions in patients with <i>HER2</i>-amplified mCRC undergoing TP therapy.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"9 \",\"pages\":\"e2400385\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO-24-00385\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-24-00385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:人表皮生长因子受体2 (HER2)靶向治疗在治疗HER2扩增的转移性结直肠癌(mCRC)中显示出希望。确定治疗决策的最佳生物标志物仍然具有挑战性。本研究探讨了人工智能(AI)在预测her2扩增mCRC患者对曲妥珠单抗加帕妥珠单抗(TP)治疗反应中的潜力。材料与方法:采用ai驱动的HER2定量连续评分(QCS)和肿瘤微环境(TME)分析方法对预筛选队列(n = 143)和TRIUMPH队列(n = 30)进行分析。AI分析仪测定了HER2染色强度的肿瘤细胞(TCs)比例和TME中各种细胞的密度,并研究了它们与TP临床结果的关系。结果:人工智能驱动的HER2免疫组化(IHC) QCS对病理学评估的准确率为86.7%,对HER2 IHC 3+患者的准确率为100%。≥50%的TCs显示HER2 3+染色强度(ai - h3高)的患者表现出显著延长的无进展生存期(PFS;中位PFS, 4.4 v 1.4个月;风险比[HR], 0.12 [95% CI, 0.04 ~ 0.38])和总生存期(OS;中位OS: 16.5 v 4.1个月;结论:ai驱动的HER2 QCS和TME分析显示,在接受TP治疗的HER2扩增的mCRC患者中,有可能提高治疗反应预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence-Powered Human Epidermal Growth Factor Receptor 2 and Tumor Microenvironment Analysis in Human Epidermal Growth Factor Receptor 2-Amplified Metastatic Colorectal Cancer: Exploratory Analysis of Phase II TRIUMPH Trial.

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating HER2-amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with HER2-amplified mCRC from the phase II TRIUMPH trial.

Materials and methods: AI-powered HER2 quantification continuous score (QCS) and tumor microenvironment (TME) analysis were applied to the prescreening cohort (n = 143) and the TRIUMPH cohort (n = 30). AI analyzers determined the proportions of tumor cells (TCs) with HER2 staining intensity and the densities of various cells in TME, examining their associations with clinical outcomes of TP.

Results: The AI-powered HER2 QCS for HER2 immunohistochemistry (IHC) achieved an accuracy of 86.7% against pathologist evaluations, with a 100% accuracy for HER2 IHC 3+ patients. Patients with ≥50% of TCs showing HER2 3+ staining intensity (AI-H3-high) exhibited significantly prolonged progression-free survival (PFS; median PFS, 4.4 v 1.4 months; hazard ratio [HR], 0.12 [95% CI, 0.04 to 0.38]) and overall survival (OS; median OS, 16.5 v 4.1 months; HR, 0.13 [95% CI, 0.05 to 0.38]) compared with the AI-H3-low (<50% group). Stratification among patients with AI-H3-high included TME-high (all lymphocyte, fibroblast, and macrophage densities in the cancer stroma above the median) and TME-low (anything below the median), showing a median PFS of 1.3 and 5.6 months for TME-high and TME-low respectively, with an HR of 0.04 (95% CI, 0.01 to 0.19) for AI-H3-high with TME-low compared with AI-H3-low.

Conclusion: AI-powered HER2 QCS and TME analysis demonstrated potential in enhancing treatment response predictions in patients with HER2-amplified mCRC undergoing TP therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信