Xiaoyan Tan, Yi Yang, Xia Wu, Jing Zhu, Teng Wang, Huihui Jiang, Shu Chen, Shifeng Lou
{"title":"1例a型血友病女性杂合型内含子22反转及X染色体畸变失活的研究。","authors":"Xiaoyan Tan, Yi Yang, Xia Wu, Jing Zhu, Teng Wang, Huihui Jiang, Shu Chen, Shifeng Lou","doi":"10.3389/fgene.2024.1500167","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Hemophilia A (HA) is an X-linked recessive inherited bleeding disorder that typically affects men. Women are usually asymptomatic carriers, and rarely presenting with severe or moderately severe phenotype. This study aims to describe a case of a 17-year-old girl with moderate HA, investigating the mechanisms of her condition and the genetic basis within her family.</p><p><strong>Methods: </strong>We conducted coagulation tests and bleeding assessments to evaluate her bleeding phenotype. Molecular genetic examinations, karyotype analysis, X-chromosome inactivation testing, and targeted bioinformatic analysis were used to identify potential genetic etiologies.</p><p><strong>Results: </strong>The proband exhibited a severe bleeding phenotype and was found to be a heterozygous carrier of an intron 22 inversion (Inv22) with a normal chromosomal karyotype. No other hemostatic defects were identified through whole exome sequencing. The proband's mother and monozygotic twin sister are also Inv22 carriers, yet remain asymptomatic with normal FVIII activity. X-chromosome inactivation experiments revealed unbalanced inactivation in the proband, leading to the silencing of the healthy X copy. Notably, several novel X-linked gene mutations (SHROOM2, RPGR, VCX3B, GAGE, GCNA, ZNF280C, CT45A, and XK) were identified in the proband compared to her monozygotic twin sister, though their impact on X-chromosome inactivation remains unclear.</p><p><strong>Conclusion: </strong>Our findings suggest that the proband's bleeding phenotype results from unbalanced X-chromosome inactivation. This research marks the first analysis of X chromosome-related gene mutations among monozygotic twins who are carriers of hemophilia A, laying the groundwork for further investigations into the disorder's pathogenesis in women and highlighting the complexities in genetic counseling.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"15 ","pages":"1500167"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743268/pdf/","citationCount":"0","resultStr":"{\"title\":\"An investigation of a hemophilia A female with heterozygous intron 22 inversion and skewed X chromosome inactivation.\",\"authors\":\"Xiaoyan Tan, Yi Yang, Xia Wu, Jing Zhu, Teng Wang, Huihui Jiang, Shu Chen, Shifeng Lou\",\"doi\":\"10.3389/fgene.2024.1500167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Hemophilia A (HA) is an X-linked recessive inherited bleeding disorder that typically affects men. Women are usually asymptomatic carriers, and rarely presenting with severe or moderately severe phenotype. This study aims to describe a case of a 17-year-old girl with moderate HA, investigating the mechanisms of her condition and the genetic basis within her family.</p><p><strong>Methods: </strong>We conducted coagulation tests and bleeding assessments to evaluate her bleeding phenotype. Molecular genetic examinations, karyotype analysis, X-chromosome inactivation testing, and targeted bioinformatic analysis were used to identify potential genetic etiologies.</p><p><strong>Results: </strong>The proband exhibited a severe bleeding phenotype and was found to be a heterozygous carrier of an intron 22 inversion (Inv22) with a normal chromosomal karyotype. No other hemostatic defects were identified through whole exome sequencing. The proband's mother and monozygotic twin sister are also Inv22 carriers, yet remain asymptomatic with normal FVIII activity. X-chromosome inactivation experiments revealed unbalanced inactivation in the proband, leading to the silencing of the healthy X copy. Notably, several novel X-linked gene mutations (SHROOM2, RPGR, VCX3B, GAGE, GCNA, ZNF280C, CT45A, and XK) were identified in the proband compared to her monozygotic twin sister, though their impact on X-chromosome inactivation remains unclear.</p><p><strong>Conclusion: </strong>Our findings suggest that the proband's bleeding phenotype results from unbalanced X-chromosome inactivation. This research marks the first analysis of X chromosome-related gene mutations among monozygotic twins who are carriers of hemophilia A, laying the groundwork for further investigations into the disorder's pathogenesis in women and highlighting the complexities in genetic counseling.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"15 \",\"pages\":\"1500167\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743268/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2024.1500167\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1500167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
An investigation of a hemophilia A female with heterozygous intron 22 inversion and skewed X chromosome inactivation.
Objectives: Hemophilia A (HA) is an X-linked recessive inherited bleeding disorder that typically affects men. Women are usually asymptomatic carriers, and rarely presenting with severe or moderately severe phenotype. This study aims to describe a case of a 17-year-old girl with moderate HA, investigating the mechanisms of her condition and the genetic basis within her family.
Methods: We conducted coagulation tests and bleeding assessments to evaluate her bleeding phenotype. Molecular genetic examinations, karyotype analysis, X-chromosome inactivation testing, and targeted bioinformatic analysis were used to identify potential genetic etiologies.
Results: The proband exhibited a severe bleeding phenotype and was found to be a heterozygous carrier of an intron 22 inversion (Inv22) with a normal chromosomal karyotype. No other hemostatic defects were identified through whole exome sequencing. The proband's mother and monozygotic twin sister are also Inv22 carriers, yet remain asymptomatic with normal FVIII activity. X-chromosome inactivation experiments revealed unbalanced inactivation in the proband, leading to the silencing of the healthy X copy. Notably, several novel X-linked gene mutations (SHROOM2, RPGR, VCX3B, GAGE, GCNA, ZNF280C, CT45A, and XK) were identified in the proband compared to her monozygotic twin sister, though their impact on X-chromosome inactivation remains unclear.
Conclusion: Our findings suggest that the proband's bleeding phenotype results from unbalanced X-chromosome inactivation. This research marks the first analysis of X chromosome-related gene mutations among monozygotic twins who are carriers of hemophilia A, laying the groundwork for further investigations into the disorder's pathogenesis in women and highlighting the complexities in genetic counseling.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.