{"title":"一种揭示复杂性状中性别特异性基因组特征的新统计方法。","authors":"Samaneh Mansouri, Mélissa Rochette, Benoit Labonté, Qingrun Zhang, Ting-Huei Chen","doi":"10.1002/gepi.22612","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Genotype–phenotype association studies have advanced our understanding of complex traits but often overlook sex-specific genetic signals. The growing awareness of sex-specific influences on human traits and diseases necessitates tailored statistical methodologies to dissect these genetic intricacies. Rare genetic variants play a significant role in disease development, often exhibiting stronger per-allele effects than common variants. In sex-dimorphic analysis, traits are viewed as having two sex-specific subsets rather than being uniformly defined. Existing methods for gene-based analysis of rare variants across multiple traits can identify shared genetic signals but cannot reveal the specific subsets from which significant signals originate. This means that when a significant signal is detected, it remains unclear whether it arises from the male samples, female samples, or both. To address this limitation, we propose <i>SubsetRV</i>, a new methodology capable of identifying genes associated with specific traits or diseases in males, females, or both. <i>SubsetRV</i> can also be applied to broader applications in multiple traits analysis. Simulation studies have demonstrated <i>SubsetRV</i>'s reliability, and real data analysis on bipolar disorder and schizophrenia has revealed potential sex-specific genetic signals. <i>SubsetRV</i> offers a valuable tool for identifying sex-specific genetic candidates, aiding in understanding disease mechanisms. An R package for <i>SubsetRV</i> is available on GitHub. It can be accessed directly through this link: https://github.com/Mansouri-S/SubsetRV.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Statistical Method for Unmasking Sex-Specific Genomics Signatures in Complex Traits\",\"authors\":\"Samaneh Mansouri, Mélissa Rochette, Benoit Labonté, Qingrun Zhang, Ting-Huei Chen\",\"doi\":\"10.1002/gepi.22612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Genotype–phenotype association studies have advanced our understanding of complex traits but often overlook sex-specific genetic signals. The growing awareness of sex-specific influences on human traits and diseases necessitates tailored statistical methodologies to dissect these genetic intricacies. Rare genetic variants play a significant role in disease development, often exhibiting stronger per-allele effects than common variants. In sex-dimorphic analysis, traits are viewed as having two sex-specific subsets rather than being uniformly defined. Existing methods for gene-based analysis of rare variants across multiple traits can identify shared genetic signals but cannot reveal the specific subsets from which significant signals originate. This means that when a significant signal is detected, it remains unclear whether it arises from the male samples, female samples, or both. To address this limitation, we propose <i>SubsetRV</i>, a new methodology capable of identifying genes associated with specific traits or diseases in males, females, or both. <i>SubsetRV</i> can also be applied to broader applications in multiple traits analysis. Simulation studies have demonstrated <i>SubsetRV</i>'s reliability, and real data analysis on bipolar disorder and schizophrenia has revealed potential sex-specific genetic signals. <i>SubsetRV</i> offers a valuable tool for identifying sex-specific genetic candidates, aiding in understanding disease mechanisms. An R package for <i>SubsetRV</i> is available on GitHub. It can be accessed directly through this link: https://github.com/Mansouri-S/SubsetRV.</p>\\n </div>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22612\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22612","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A Novel Statistical Method for Unmasking Sex-Specific Genomics Signatures in Complex Traits
Genotype–phenotype association studies have advanced our understanding of complex traits but often overlook sex-specific genetic signals. The growing awareness of sex-specific influences on human traits and diseases necessitates tailored statistical methodologies to dissect these genetic intricacies. Rare genetic variants play a significant role in disease development, often exhibiting stronger per-allele effects than common variants. In sex-dimorphic analysis, traits are viewed as having two sex-specific subsets rather than being uniformly defined. Existing methods for gene-based analysis of rare variants across multiple traits can identify shared genetic signals but cannot reveal the specific subsets from which significant signals originate. This means that when a significant signal is detected, it remains unclear whether it arises from the male samples, female samples, or both. To address this limitation, we propose SubsetRV, a new methodology capable of identifying genes associated with specific traits or diseases in males, females, or both. SubsetRV can also be applied to broader applications in multiple traits analysis. Simulation studies have demonstrated SubsetRV's reliability, and real data analysis on bipolar disorder and schizophrenia has revealed potential sex-specific genetic signals. SubsetRV offers a valuable tool for identifying sex-specific genetic candidates, aiding in understanding disease mechanisms. An R package for SubsetRV is available on GitHub. It can be accessed directly through this link: https://github.com/Mansouri-S/SubsetRV.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.